首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a theoretical and computational study of the properties and the response of the nanoplasma and of outer ionization in Xen clusters (n = 55–2171, initial cluster radius R0 = 8.7–31.0 ?) driven by ultraintense near-infrared laser fields (peak intensity IM = 1015–1020 Wcm-2, temporal pulse length τ= 10–100 fs, and frequency ν= 0.35 fs-1). The positively charged high-energy nanoplasma produced by inner ionization nearly follows the oscillations of the fs laser pulse and can either be persistent (at lower intensities of IM = 1015–1016 Wcm-2 and/or for larger cluster sizes, where the electron energy distribution is nearly thermal) or transient (at higher intensities of IM = 1018–1020 Wcm-2 and/or for smaller cluster sizes). The nanoplasma is depleted by outer ionization that was semiquantitatively described by the cluster barrier suppression electrostatic model, which accounts for the cluster size, laser intensity and pulse length dependence of the outer ionization yield. The electrostatic model was further utilized for estimates of the laser intensity and pulse width dependence of the border radius R0 (I) for the attainment of complete outer ionization at , while at R0 > R0 (I) a persistent nanoplasma prevails. R0 (I) establishes an interrelationship between electron dynamics and nuclear Coulomb explosion dynamics in ultraintense laser-cluster interactions.  相似文献   

2.
In this paper we report on inner ionization of Xen clusters (n = 55- 2171) in ultraintense Gaussian laser fields (peak intensity I = 1015- 1020 Wcm-2, pulse width τ= 25 fs, frequency 0.35 fs-1). The cluster inner ionization process is induced by the barrier suppression ionization (BSI) mechanism and by electron impact ionization (EII), which occurs sequentially with the BSI. We address electron impact ionization of clusters, which pertains to inelastic reactive processes of the high-energy (100 eV–1 keV per electron) nanoplasma. We utilized experimental data for the energy dependence of the electron impact ionization cross-sections of Xej+ (j = 1-10) ions, which were fit by an empirical three-parameter Lotz-type equation, to explore EII in clusters by molecular dynamics simulations. Information was obtained on the yields and time-resolved dynamics of the EII levels (i.e., number nimp of electrons per cluster atom) in the Xen clusters and their dependence on the laser intensity and cluster size. The relative long-time (t = 90 fs) yields for EII, nimp/nii (where nii is the total inner ionization yield) are rather low and increase with decreasing the laser intensity. In the intensity range I = 1015-1016 Wcm-2, nimp/nii = 0.21 for n = 2171 and nimp/nii = 0.09-0.14 for n = 459, while for I = 1018-1020 Wcm-2, nimp/nii = 0.01-0.05. The difference Δnimp between the EII yield at long time and at the termination of the laser pulse reflects on ionization dynamics by the nanoplasma when the laser pulse is switched off. For Xe2171 in the lower intensity domain, Δ nimp = 0.9 at I = 1015 Wcm-2 and Δnimp = 0.4 at 1016 Wcm-2, reflecting on EII by the persistent nanoplasma under “laser free” conditions, while in the higher intensity domain of I = 1017 - 1018 Wcm-2, Δnimp is negligibly small due to the depletion of the transient nanoplasma.  相似文献   

3.
A SiO2 aerogel with absorbed deuterium is proposed as a target for the fusion reaction d + d → He3 + n induced by a superintense ultrashort laser pulse. The multiple inner ionization of oxygen and silicon atoms in the aerogel skeleton occurs in the superintense laser field. All the formed free electrons are heated and removed from the aerogel skeleton by the laser field at the front edge of the laser pulse. The subsequent Coulomb explosion of the deuterated charged aerogel skeleton propels the deuterium ions up to kinetic energies of ten keV and higher. The neutron yield is estimated at up to 105 neutrons per laser pulse for ~200–500 ps if the peak intensity is 1018 W/cm2 and the pulse duration is 35 fs.  相似文献   

4.
Femtosecond-laser spectroscopy is used to study the photoionization and photofragmentation of large neutral silicon clusters in a beam. Silicon clusters Sin with sizes up to n≈6000, corresponding to nanoparticles with diameters up to 6 nm, are generated in a laser vaporization source. Nanosecond- and femtosecond-laser ionization are employed to characterize the free silicon nanoparticles. Excitation with intense femtosecond-laser pulses leads to prompt formation of doubly and triply charged Sin clusters. Additionally, strong fragmentation of charged clusters occurs by Coulomb explosion, resulting in high released kinetic energies. Multiply charged atoms up to Si4+ with initial kinetic energies in the range of 500 eV are observed for laser intensities of about 1013 W/cm2. Pump–probe spectroscopy yields decay times of the intermediate resonances of the nanoparticles. Received: 22 January 2000 / Published online: 7 August 2000  相似文献   

5.
This contribution addresses the inelastic interaction of positively charged molecular cluster ions with a solid surface at kinetic energies up to 30 eV/molecule. We report experimental results on the scattering of mass-selected, protonated methanol cluster cations (CH3OH)nH+, n = 4-32, off a diamond-coated silicon surface. In particular we provide fragment size distributions of methanol cluster ions following their impact on the target, as well as surface-induced neutralization probabilities of methanol cluster ions as a function of the size and the kinetic energy of the parent clusters. Received 30 November 2000  相似文献   

6.
Silver clusters embedded in helium nanodroplets are exposed to intense femtosecond laser pulses (1013 - 1016 W/cm2). The signal of highly charged (q≤11) atomic fragments is maximized by delayed plasmon enhanced ionization using stretched laser pulses. Further details with respect to the dynamics of the charging process can be obtained, when the intensity distribution within the laser focus is taken into account. For the first time, the z-scan method is applied to clusters which offers a route to investigate the explicit dependence of the ion signals with respect to the laser intensity. By taking advantage of the volumetric weighting effect ionization thresholds are determined, yielding values well below 1014 W/cm2 for Agq+ ions with q≤11.  相似文献   

7.
Singly charged silver-cluster anions are produced in a laser vaporization source and transferred into a Penning trap. After size selection the clusters are subjected to an electron bath in the trap, which results in the attachment of further electrons. The relative abundance of dianions or trianions as a function of the clusters' size is analyzed by time-of-flight mass spectrometry. Silver-cluster dianions are observed for sizes n≥ 24 and trianions for n > 100. In addition, a detailed study of the cluster sizes 24 ?n? 60 shows a pronounced resistance to electron attachment for singly charged anions Agn - with a closed electronic shell, in particular Ag29 -, Ag33 -, and Ag39 -. Both the threshold size for the observation of dianionic silver clusters and the shell effects in the production yield correlate favorably with previous theoretical investigations of the respective electron affinities. Received 24 November 2000  相似文献   

8.
The H atom transfer reaction in electronically excited indole(NH 3 ) n clusters is studied in pump-probe experiments with femtosecond laser pulses. By applying different probe photon energies we are able to detect the dissociation products (NH 3 ) n - 1 NH 4 for n = 1-6. Furthermore we show that the analysis of the corresponding ion signals is not distorted by contributions from larger cluster ions due to evaporation of NH 3 molecules. The formation times of the products are ca. 140ps for n = 2-4 and about 80ps for n = 5, 6. Received 30 April 2002 / Received in final form 29 May 2002 Published online 13 September 2002  相似文献   

9.
The interaction of intense laser fields with silver and argon clusters is investigated theoretically using a modified nanoplasma model. Single pulse and double pulse excitations are considered. The influence of the dense cluster environment on the inner ionization processes is studied including the lowering of the ionization energies. There are considerable changes in the dynamics of the laser-cluster interaction. Especially, for silver clusters, the lowering of the ionization energies leads to increased yields of highly charged ions.  相似文献   

10.
Metastable fragmentation of silver bromide clusters   总被引:2,自引:0,他引:2  
The abundance spectra and the fragmentation channels of silver bromide clusters have been measured and analyzed. The most abundant species are AgnBrn - 1 + and AgnBrn + 1 - and Ag14Br13 + is a magic number, revealing their ionic nature. However, some features depart from what is generally observed for alkali-halide ionic clusters. From a certain size, AgnBrn - 1 + is no more the main series, and AgnBr n - 2, 3 + series become almost as important. The fast fragmentation induced by a UV laser makes the cations lose more bromine than silver ions and lead to more silver-rich clusters. Negative ions mass spectra contain also species with more silver atoms than required by stoichiometry. We have investigated the metastable fragmentation of the cations using a new experimental method. The large majority of the cations release mainly a neutral Ag3Br3 cluster. These decay channels are in full agreement with our recent ab initio DFT calculations, which show that Ag+-Ag+ repulsion is reduced due to a globally attractive interaction of their d orbitals. This effect leads to a particularly stable trimer (AgBr)3 and to quasi-planar cyclic structures of (AgBr)n clusters up to n = 6. We have shown that these two features may be extended to other silver halides, to silver hydroxides (AgOH)n, and to cuprous halide compounds. Received 9 November 2000 and Received in final form 25 January 2001  相似文献   

11.
An ab initio study of the Nan(OH)n, Nan(OH)n-1 +, Agn(OH)n, and Agn(OH)n-1 + clusters with n up to four is presented. The results of this study show that, in accordance with experimental observations, the sodium hydroxide clusters are almost purely ionic, while the Ag-O bond exhibits a significant covalent character. The perturbation caused by the non-spherical OH- group relatively to an atomic anion, as well as the influence on structures and energies of the covalent character of the metal-oxygen bond are determined. The appearance of metal-metal bonds in the silver hydroxide clusters is also discussed. Finally, the theoretical results obtained on the Na-OH clusters are compared to experimental results available on the dissociation of the Nan(OH)n-1 + clusters. Received 9 August 1999 and Received in final form 1st December 1999  相似文献   

12.
The fragmentation of multiply charged atomic sodium clusters of mass 200 is investigated using the Micro-canonical Metropolis Monte Carlo (MMMC) statistical technique for excitation energies up to 200 eV and for cluster charges up to +9e. In this work we present caloric curves and charged and uncharged fragment mass distributions for clusters with charges 0, 2, and 4. The caloric curves show a dip at the critical point implying a negative specific heat, as expected for finite systems, while the fragment mass distributions corroborate the picture of a phase transition from one dominant liquid-like cluster to complete vaporization. Received 7 November 2001 / Received in final form 4 April 2002 Published online 28 June 2002  相似文献   

13.
Neutral ammonia clusters (NH3)m are photo-excited to the electronic state by a deep UV femtosecond laser pump pulse. Within a few hundred femtoseconds a significant fraction of the clusters rearrange to form an H-transfer state (NH3)m-2NH4(3s)NH2 with the subunit NH4 in its 3s electronic ground state. This state is then electronically excited by a time-delayed infrared control pulse of variable wavelength. Finally, a third (probe) pulse in the UV ionizes the clusters for detection. The lifetime of the excited (NH3)m-2NH4(3p)NH2 states is found to vary between 2.7 and 0.13 ps depending on cluster size and excitation energy. It increases drastically upon deuteration. The corresponding cluster size-dependent photoelectron spectra allow us to disentangle the underlying energetics of the excitation and ionization process and reveal additional processes, such as nonresonant ionization or dissociative ionization. The experimental findings suggest that the excited H-transfer ammonia complexes with m > 2 are deactivated by an internal conversion process back to the electronically lowest H-transfer state followed by fast dissociation. Received 22 September 2001 and Received in final form 31 January 2002  相似文献   

14.
The cyclotron frequencies of singly charged carbon clusters Cn + (n ≥ 2) were measured with the Penning-trap mass spectrometer ISOLTRAP at ISOLDE/CERN. The present limit of mass accuracy δm/m = 1.2 . 10-8 and the extent of the mass-dependent systematic shift (δm/m)sys = 1.7(0.6) . 10-10/u . (m - m ref) of the setup were investigated for the first time. In addition, absolute mass measurements by use of pure clusters of the most abundant carbon isotope 12C are now possible at ISOLTRAP. Received: 21 March 2002 / Accepted: 16 May 2002 / Published online: 31 October 2002 RID="a" ID="a"Present address: CERN, CH-1211 Geneva 23, Switzerland; e-mail: klaus.blaum@cern.ch  相似文献   

15.
We present a theoretical study of the short-time relaxation of clusters in response to ultrafast excitations using femtosecond laser pulses. We analyze the excitation of different types of clusters (Hgn, Agn, Sin, C60 and Xen) and classify the relaxation dynamics in three different regimes, depending on the intensity of the exciting laser pulse. For low-intensity pulses (I<1012 W/cm2) we determine the time-dependent structural changes of clusters upon ultrashort ionization and photodetachment. We also study the laser-induced non-equilibrium fragmentation and melting of Sin and C60 clusters, which occurs for moderate laser intensities, as a function of the pulse duration and energy. As an example for the case of high intensities (I>1015 W/cm2), the explosion of clusters under the action of very intense ultrashort laser fields is described. Received: 26 November 1999 / Published online: 2 August 2000  相似文献   

16.
A 0.5 cm–1 bandwidth injection-locked KrF laser pumps a rare-gas Brillouin cell to produce a reflected pulse with a leading edge risetime of 1 ns, tunable from 248.1 to 248.7 nm. Consistent with Lamb theory of laser amplifiers, subsequent excimer amplification of this pulse produces an intense 500 ps spike on the pulse leading edge. Stimulated Raman scattering then separates the spike from the parent pulse, yielding a tunable short pulse at the first Stokes (S 1) wavelength. Varying the Raman cell length results in a variable Raman threshold and an adjustable short pulse duration: 250 ps pulses at energies of 3–4 mJ at 268 nm with a 50 cm methane cell and 350 ps, 5 mJ pulses from a 100 cm cell are measured with a streak camera. First pass Raman conversion of the spike toS 1 followed by second pass backward Raman amplification, where the parent 248 nm pulse serves as the pump beam for the reflectedS 1 pulse, yields simultaneousS 1 pulses of 20–25 mJ in the 800 ps range andS 2 pulses of 550 ps at 5–6 mJ near 290 nm. This laser will avoid collision effects during laser excitation and enable quantitative, single pulse imaging of OH radicals in turbulent combustion because of its high pulse energy.  相似文献   

17.
We present a method for the numerical investigation of the electron dynamics in small metallic clusters in intense laser fields. We obtain information about collective excitations and relaxation processes in the Na 9 + and Pt3 clusters analyzing the power spectrum of the dipole moment within a mean-field approach. The power spectrum is computed for various laser pulse parameters as well as for the limit of an infinitely short laser pulse. Due to the basis set expansion of the wave function our method is capable to follow the dynamics not only of the whole electron cloud, but of any particular molecular orbital. Received 28 March 2002 / Received in final form 31 May 2002 Published online 24 September 2002 RID="a" ID="a"e-mail: pavlyukh@mpi-halle.de  相似文献   

18.
The structure and stability of small neutral and positively charged zinc oxide (ZnO) n clusters (n = 2−9) have been studied within the density functional theory. For n ≤ 7, the most stable clusters are shown to be flat rings; for n = 8, 9, the clusters are mainly three-dimensional cage structures. The energies and main channels of fragmentation of the clusters have been determined. It has been found that the fragmentation of the charged clusters with n > 6 occurs predominantly with formation of a (ZnO)4+ ion, which explains the available mass spectrometric data on ionization of the zinc oxide clusters by electron impact.  相似文献   

19.
For a detailed study of the accuracy of the Penning trap mass spectrometer ISOLTRAP all expected sources of uncertainty were investigated with respect to their contributions to the uncertainty of the final result. In the course of these investigations, cross-reference measurements with singly charged carbon clusters 12C+ n were carried out. The carbon cluster ions were produced by use of laser-induced desorption, fragmentation, and ionization of C60 fullerenes and injected into and stored in the Penning trap system. The comparison of the cyclotron frequencies of different carbon clusters has provided detailed insight into the residual systematic uncertainty of ISOLTRAP and yielded a value of 8×10-9. This also represents the current limit of mass accuracy of the apparatus. Since the unified atomic mass unit is defined as 1/12 of the mass of the 12C atom, it will be possible to carry out absolute mass measurements with ISOLTRAP in the future. Received 7 June 2002 Published online 6 November 2002 RID="a" ID="a"e-mail: a.kellerbauer@cern.ch RID="b" ID="b"Current address: Centre de Physique des Particules de Marseille, 13288 Marseille Cedex 9, France.  相似文献   

20.
Using 50 fs ( ∼ 2×1018 W/cm2) and 2 ps ( ∼ 5×1016 W/cm2) pulses from a Ti:Sa multi-TW laser at 800 nm wavelength large Xe-clusters ( 105...106 atoms per cluster) have been excited. Absolute yield measurements of EUV-emission in a wavelength range between 10 nm and 15 nm in combination with cluster target variation were carried out. The ps-laser pulse has resulted in about 30% enhanced and spatially more uniform EUV-emission compared to fs-laser excitation. Circularly polarized laser light instead of linear polarization results in enhanced emission which is probably caused by electrons gaining higher energies by the polarization dependent optical field ionization process. An absolute emission efficiency at 13.4 nm of up to 0.8% in 2π sr and 2.2% bandwidth has been obtained. Received 11 January 2001 and Received in final form 27 March 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号