首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Ordered aggregation of thiol-passivated Au nanoparticles in a diblock copolymer polystyrene-b-poly(methyl methacrylate) has been observed. The morphology of the diblock copolymer/Au-nanocomposite was dependent on the composition of the thiol modifier. For the thiol modifier that does not preferentially interact with one of the blocks, a perpendicular (relative to the substrate) lamellar morphology is maintained. However, for a thiol with a surfactant structure similar to one of the blocks, we observed a parallel lamellar morphology and speculate that the nanoparticles have localized at the microdomain interface. These conclusions are based on transmission electron microscopy, angle-dependent X-ray photoelectron microscopy and tensiometry. These results are consistent with theoretical predictions on the hybrid systems composed of block copolymers and nanoparticles.  相似文献   

2.
The effects of blend composition on morphology, order-disorder transition (ODT), and chain conformation of symmetric ABA/AB copolymer blends confined between two neutral hard walls have been investigated by lattice Monte Carlo simulation. Only lamellar structure is observed in all the simulation morphologies under thermodynamic equilibrium state, which is supported by theoretical prediction. When the composition of AB diblock copolymer (phi) increases, both lamellar spacing and the corresponding ODT temperature increase, which can be attributed to the variation of conformation distribution of the diblock and the triblock copolymer chains. In addition, both diblock and triblock copolymer, chains with bridge conformation extend dramatically in the direction parallel to the surface when the system is in ordered state. Finally, the copolymer chain conformation depends strongly on both the blend composition and the incompatibility parameter chiN.  相似文献   

3.
A lattice simulation of a model diblock copolymer melt is presented. In a series of simulation experiments an 8-8 diblock melt is quenched from an athermal state to 47 lower temperatures. A set of simulation boxes, 30 x 32 x 30, 40 x 32 x 60, 50 x 32 x 30, and 60 x 32 x 30, is used in order to explore the size effects. Energy, specific heat, copolymer end-to-end distance, lamellar spacing, and the degree of interfacial ordering are reported. For all sizes considered, the low-temperature interfacial ordering is noticeable.  相似文献   

4.
采用含时金兹堡-朗道理论(time-dependent ginzburg-landau theory,简称TDGL)方法研究了纳米粒子(nanoparticles,简称NPs)掺杂的两嵌段共聚物/均聚物(AB/C)共混体系在球形受限下的自组装行为.在不同球形受限条件下,两嵌段共聚物/均聚物共混体系形成了多种丰富的形貌,如双螺旋结构、单螺旋结构、层状结构和洋葱环状结构等.当在以上前3种体系中掺杂纳米粒子后,体系结构发生了很大的变化.详细研究了纳米粒子的浓度和浸润强度对以上结构的影响.研究结果表明,通过调控纳米粒子的浓度和浸润性质,该共混体系实现了双螺旋结构→层状结构,单螺旋结构→双螺旋结构,层状结构→单螺旋结构等多种取向序的转变.对于洋葱环状结构,纳米粒子的加入对体系这一结构的影响不大.  相似文献   

5.
The dissipative particle dynamics (DPD) simulation method was applied to simulate the aggregation behavior of three block copolymers, (EO)16(PO)18, (EO)8(PO)18(EO)8, and (PO)9(EO)16(PO)9, in aqueous solutions. The results showed that the size of the micelle increased with increasing concentration. The diblock copolymer (EO)16(PO)18 would form an intercluster micelle at a certain concentration range, besides the traditional aggregates (spherical micelle, cylindrical micelle, and lamellar phase); while the triblock copolymer (EO)8(PO)18(EO)8 would form a spherical micelle, cylindrical micelle, and lamellar phase with increasing concentration, and (PO)9(EO)16(PO)9 would form intercluster aggregates, as well as a spherical micelle and gel. New mechanisms were given to explain the two kinds of intercluster micelle formed by the different copolymers. It is deduced from the end-to-end distance that the morphologies of the diblock copolymer and triblock copolymer with hydrophilic ends were more extendible than the triblock copolymer with hydrophobic ends.  相似文献   

6.
The self-assembly of symmetric coil-rod-coil ABA-type triblock copolymer melts is studied by applying self-consistent field lattice techniques in a three-dimensional space. The self-assembled ordered structures differ significantly with the variation of the volume fraction of the rod component, which include lamellar, wave lamellar, gyroid, perforated lamellar, cylindrical, and spherical-like phases. To understand the physical essence of these phases and the regimes of occurrence, we construct the phase diagram, which matches qualitatively with the existing experimental results. Compared with the coil-rod AB diblock copolymer, our results revealed that the interfacial grafting density of the separating rod and coil segments shows important influence on the self-assembly behaviors of symmetric coil-rod-coil ABA triblock copolymer melts. We found that the order-disorder transition point changes from f(rod)=0.5 for AB diblock copolymers to f(rod)=0.6 for ABA triblock copolymers. Our results also show that the spherical-like and cylindrical phases occupy most of the region in the phase diagram, and the lamellar phase is found stable only at the high volume fraction of the rod.  相似文献   

7.
The phase separation of diblock copolymers containing some energetically neutral/biased nanoparticles is studied by means of large-scale dissipative particle dynamics (DPD) simulations. The effects of the volume fraction of nanoparticles, the size of nanoparticles, and the interaction strength between nanoparticles and blocks on the lamellar phase separation of diblock copolymers are investigated. When these effects are up to a critical value, the diblock copolymer nanocomposites can form a new bicontinuous morphology, which is well consistent with the experimental results. It is also found that the degree of order of phase separation for a given system increases slightly and then decreases abruptly until the bicontinuous morphology is formed as the volume fraction of nanoparticles increases. Furthermore, we discuss the microphase transition through the position distributions of nanoparticles and present a phase diagram in terms of the nanoparticle volume fraction, size, and surface interaction strength.  相似文献   

8.
We present molecular dynamics simulations coupled with a dissipative particle dynamics thermostat to model and simulate the behavior of symmetric diblock copolymer/nanoparticle systems under simple shear flow. We consider two categories of nanoparticles, one with selective interactions toward one of the blocks of a model diblock copolymer and the other with nonselective interactions with both blocks. For the selective nanoparticles, we consider additional variants by changing the particle diameter and the particle-polymer interaction potential. The aim of our present study is to understand how the nanoparticles disperse in a block copolymer system under shear flow and how the presence of nanoparticles affects the rheology, structure, and flow behavior of block copolymer systems. We keep the volume fraction of nanoparticles low (0.1) to preserve lamellar morphology in the nanocomposite. Our results show that shear can have a pronounced effect on the location of nanoparticles in block copolymers and can therefore be used as another parameter to control nanocomposite self-assembly. In addition, we investigate the effect of nanoparticles on shear-induced lamellar transition from parallel to perpendicular orientation to further elucidate nanocomposite behavior under shear, which is an important tool to induce long-range order in self-assembling materials such as block copolymers.  相似文献   

9.
A hybrid self-consistent field theory/density functional theory method is applied to predict tilt (kink) grain boundary structures between lamellar domains of a symmetric diblock copolymer with added spherical nanoparticles. Structures consistent with experimental observations are found and theoretical evidence is provided in support of a hypothesis regarding the positioning of nanoparticles. Some particle distributions are predicted for situations not yet examined by experiment.  相似文献   

10.
Poly(methyl methacrylate) (PMMA) nanoparticles with a sensitive CO2‐responsive hydrophilic/hydrophobic surface that confers controlled dispersion and aggregation in water were prepared by emulsion polymerization at 50 °C under CO2 bubbling using amphiphilic diblock copolymers of 2‐dimethylaminoethyl methacrylate (DMAEMA) and N‐isopropyl acrylamide (NIPAAm) as an emulsifier. The amphiphilicity of the hydrophobic–hydrophilic diblock copolymer at 50 °C was triggered by CO2 bubbling in water and enabled the copolymer to serve as an emulsifier. The resulting PMMA nanoparticles were spherical, approximately 100 nm in diameter and exhibited sensitive CO2/N2‐responsive dispersion/aggregation in water. Using copolymers with a longer PNIPAAm block length as an emulsifier resulted in smaller particles. A higher concentration of copolymer emulsifier led to particles with a stickier surface. Given its simple preparation and reversible CO2‐triggered amphiphilic behavior, this newly developed block copolymer emulsifier offers a highly efficient route toward the fabrication of sensitive CO2‐stimuli responsive polymeric nanoparticle dispersions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2149–2156  相似文献   

11.
We introduce and apply a variant of a dynamic self-consistent field simulation in two dimensions to predict the structure of interfaces between a nematic and an amorphous polymer compatibilized by a diblock copolymer. First, we investigate the effect of the nematic order on the polymer polymer interface without compatibilizer. Then we include the compatibilizer and consider two interfacial setups previously used in experiments, i.e., the bilayer setup and the trilayer setup. In the bilayer setup the diblock copolymer is mixed into the amorphous homopolymer and migrates to the interface in the course of the simulation forming a layered structure. We compare the amount of copolymer at the interface for initial concentrations of the copolymer below and above the critical micelle concentration. In the trilayer setup the initial thickness of the diblock copolymer is varied. The resulting interfacial morphology evolves in the competition between the lamellar structure induced by the interface and a micellar structure, which is intrinsic to the copolymer.  相似文献   

12.
Summary: Monte Carlo simulation utilizing the bond fluctuation model in conjunction with single and configurational biased Monte Carlo moves is used to study the adsorption of diblock (A‐block‐B) and alternating (A‐alt‐B) copolymers at flat, chemically heterogeneous surfaces comprising C and D domains. The main objective of this work is to address the effect of the strength of attraction between the adsorbing surface domains, D, and the copolymer adsorbing segments, B, on the copolymer's ability to recognize the chemical pattern on the surface. The results of our simulations reveal that both block and alternating copolymers have the ability to recognize the surface motif and transcribe it into the bulk material. The extent to which diblock copolymers transfer the chemical pattern from the surface to the bulk is relatively unaffected when the attractive B‐D potential is increased beyond a certain critical value. This behavior stems from the brush‐like conformation adopted by the diblock copolymer at the substrate. In contrast to the diblock copolymer, the adsorption of the alternating copolymer is influenced by the strength of the attraction between the copolymer's adsorbing segments and the adsorbing domains on the surface. Since the B segments are distributed evenly along the backbone, the alternating copolymers are more likely to adopt conformations in which the whole chain is “zipped” to the surface. The resultant entropic frustration is then alleviated through an increased formation of loops with little change to their length. Such conformational changes endow the alternating copolymer with the ability to invert the substrate pattern as the distance away from the surface is increased.

  相似文献   


13.
卢宇源 《高分子科学》2017,35(7):874-886
We use a Monte Carlo method to study the phase and interfacial behaviors of A-b-B diblocks in a blend of homopolymers, A and B, which are confined between two asymmetric hard and impenetrable walls. Our results show that, when the interaction strength is weak, the block copolymersare uniformly distributed in the ternary mixtures under considered concentrations. Under strong interaction strength, distribution region of the block copolymers changes from a single smooth interface to a curved interface or multi-layer interface in the ternary mixtures. Furthermore, our findings show that with increasing volume fraction of A-b-B diblock copolymer(фC), copolymer profiles broaden while фC≥ 0.4, a lamellar phase is formed and by further increasing фC, more thinner layers are observed. Moreover, the results show that, with the increase of фC, the phase interface first gradually transforms from plane to a curved surface rather than micelle or lamellar phase while with the increase of the interaction between A and B segments(ε_(AB)), the copolymer chains not only get stretched in the direction perpendicular to the interface, but also are oriented. The simulations also revealthat the difference between symmetric and asymmetric copolymers is negligible in statistics if the lengths of two blocksare comparable.  相似文献   

14.
Dissipative particle dynamics (DPD) simulations are performed to study the aggregation of hydrophobic nanoparticles in the presence of double-hydrophilic block copolymer (DHBC). A single compact spherical nanoparticle aggregate is formed in the absence of DHBC. The response of the aggregate to a continuous increase in the concentration of DHBC has been investigated in detail. We observe the evolvement from single spherical aggregate, through single ellipsoidal aggregate, single platelike aggregate, single long and curly rod, dispersed aggregates, then to hexagonally packed cylinders, and ultimately to ordered lamellar structures upon slow addition of DHBC chains. However, when nanoparticles and DHBCs are added into the system simultaneously at the beginning of simulation, we only obtain single spherical aggregate, dispersed aggregates, hexagonally packed cylinders, and ordered lamellar structures at different concentrations of DHBC. Phase diagrams of structures against concentration of DHBC are presented for these two methods, and the stabilities of structures obtained with the two methods are compared.  相似文献   

15.
Summary: Using bond length fluctuation and cavity diffusion algorithm, the morphologies of diblock copolymer/homopolymer blend films, AB/C and AB/A, confined between two hard walls are studied via Monte Carlo (MC) simulation on a cubic lattice. For the AB/C film, the C homopolymer is supposed to be more compatible with the A block than with the B block, while A and B are mutually incompatible. Effects of the composition of the diblock copolymer/homopolymer mixture, the symmetry of the diblock copolymer chain, the film thickness and the selective wall field on morphologies are studied in detail. Furthermore, the simulated results are compared with that of corresponding ABA and ABC triblock copolymer thin films. Comparisons with experiments and SCF theory also show good agreement. The results indicate that both the AB/C and AB/A can be used to prepare porous AB diblock copolymer membranes, the size of the pore channel can be controlled by the volume fraction of homopolymer C or homopolymer A.

Morphology of A6B14/C10 polymer blend film.  相似文献   


16.
We perform molecular simulations to study the self-assembly of block copolymer tethered cubic nanoparticles. Minimal models of the tethered nanoscale building blocks (NBBs) are utilized to explore the structures arising from self-assembly. We demonstrate that attaching a rigid nanocube to a diblock copolymer affects the typical equilibrium morphologies exhibited by the pure copolymer. Lamellar and cylindrical phases are observed in both systems but not at the corresponding relative copolymer tether block fractions. The effect of nanoparticle geometry on phase behavior is investigated by comparing the self-assembled structures formed by the tethered NBBs with those of their linear ABC triblock copolymer counterparts. The tethered nanocubes exhibit the conventional triblock copolymer lamellar and cylindrical phases when the repulsive interactions between different blocks are symmetric. The rigid and bulky nature of the cube induces interfacial curvature in the tethered NBB phases compared to their linear ABC triblock copolymer counterparts. We compare our results with those structures obtained from ABC diblock copolymer tethered nanospheres to further elucidate the role of cubic nanoparticle geometry on self-assembly.  相似文献   

17.
This work explores the use of continuous thermodynamic integration in field‐theoretic simulations of a symmetric diblock copolymer melt. Free energies of the lamellar and disorder phases are evaluated by thermodynamic integration from a reference state (an Einstein crystal, λ = 0) to a diblock copolymer (λ = 1). This is followed by integration over the interaction parameter, χb , to locate the order–disorder transition (ODT). Then the equilibrium lamellar spacing and free energy cost of stretching and compressing lamellae are examined. The ODT, lamellar spacing, and compression modulus are consistent with previous calculations, though found faster and more precisely. The above quantities do not depend on simulation box size, suggesting that finite‐size effects are small and simulating two lamellar periods is sufficient to accurately evaluate bulk behavior. Furthermore, the statistical uncertainty in the ODT increases quickly with system size, suggesting that small systems may lead to more precise results.  相似文献   

18.
A poly(D,L ‐lactide)–bromine macroinitiator was synthesized for use in the preparation of a novel biocompatible polymer. This amphiphilic diblock copolymer consisted of biodegradable poly(D,L ‐lactide) and 2‐methacryloyloxyethyl phosphorylcholine and was formed by atom transfer radical polymerization. Polymeric nanoparticles were prepared by a dialysis process in a select solvent. The shape and structure of the polymeric nanoparticles were determined by 1H NMR, atomic force microscopy, and ζ‐potential measurements. The results of cytotoxicity tests showed the good cytocompatibility of the lipid‐like diblock copolymer poly(2‐methacryloyloxyethyl phosphorylcholine)‐block‐poly(D,L ‐lactide). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 688–698, 2007  相似文献   

19.
The ternary phase diagram of the amphiphilic triblock copolymer PEO-PPO-PEO ((EO)(20)(PO)(70)(EO)(20) commercialized under the generic name P123), water, and ethanol has been investigated at constant temperature (T = 23 degrees C) by small-angle X-ray scattering (SAXS). The microstructure resulting from the self-assembly of the PEO-PPO-PEO block copolymer varies from micelles in solution to various types of liquid crystalline phases such as cubic, 3D hexagonal close packed spheres (HCPS), 2D hexagonal, and lamellar when the concentration of the polymer is increased. In the isotropic liquid phase, the micellar structural parameters are obtained as a function of the water-ethanol ratio and block copolymer concentration by fitting the scattering data to a model involving core-shell form factor and a hard sphere structure factor of interaction. The micellar core, the aggregation number, and the hard sphere interaction radius decrease when increasing the ethanol/water ratio in the mixed solvent. We show that the fraction of ethanol present in the core is responsible for the swelling of the PPO blocks. In the different liquid crystalline phases, structural parameters such as lattice spacing, interfacial area of PEO block, and aggregation number are also evaluated. In addition to classical phases such as lamellar, 2D hexagonal, and liquid isotropic phases, we have observed a two-phase region in which cubic Fm3m and P6(3)mmc (hexagonally close packing of spheres (HCPS)) phases coexist. This appears at 30% (w/w) of P123 in pure water and with 5% (w/w) of ethanol. At 10% (w/w) ethanol, only the HCPS phase remains present.  相似文献   

20.
Summary: We describe the results of Monte Carlo simulations, based on the cooperative motion algorithm, of the lamellar structure generated at finite temperature by a symmetric diblock copolymer. The (70 × 70 × 70) simulation box in which the polymer chains were embedded for each simulation was rotated, based on the interface orientation, to bring the interfacial planes of the simulated structure into parallel. We found that the interface thickness, as defined by the distribution of the junction points, became narrower at lower temperature, and that the interface plane was characterized by a waviness with a maximum peak‐to‐valley distance of 20–30 lattice bonds. Compared with the isotropic state (T/N = ∞), chains at lower temperatures were stretched in the direction perpendicular to the interface; but only modestly compressed in the direction parallel to the interface. Individual block chains within the lamellar domains still behave like random coils. The block copolymer molecules exhibit only a modest tendency to orient themselves with their end‐to‐end vector perpendicular to the plane of the lamellar interface. Considered as an ensemble average, the results we obtained are similar to those reported from small angle neutron scattering measurements for the mean conformation of the PSd blocks of symmetrical PSd‐PVP diblock copolymers.

2‐D projections onto the XZ plane of the end beads for the A‐ and B‐chains (gray) and the junction points J (black) at T/N = 0.2. The interface plane is oriented parallel to the YZ plane by rotating the simulation box. The distribution profiles of junction points and the end beads across the system in the direction of interface normal are shown in the lower part of the figure.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号