首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the enhancement of the fluorescence emitted from dye-labeled DNA upon co-aggregation with silver nanoparticles. The co-aggregation process is induced by the polycationic molecule spermine, which both neutralizes the charge of the DNA backbone and aggregates the nanoparticles. This simple method generates nanoparticle aggregates with very short (1-2 nm) inter-particle distance. Even though no spacer layer was used, large enhancements of the fluorescence, in the range of 15-740× (depending on the original quantum yield of the dye used), were observed. Theoretical modeling shows that this occurs as the local enhancement of the electromagnetic field near the hotspots is sufficiently large to overcome the quenching by the surface, even at short distances of 1 nm. The predicted trend of increased SEF enhancement with a decrease in initial quantum yield is observed. The average enhancements observed in this system are on-par with the best results obtained on nanostructured surfaces to date.  相似文献   

2.
Optical waveguide spectroscopy and atomic force microscopy (AFM) have been used to characterize the supramolecular architectures of acridine orange (AO) dye self-assembled at a mica/aqueous solution interface. Under the saturated adsorption conditions, optical waveguide spectroscopy revealed that the dye formed H-type aggregates at the interface. In situ AFM visualized interesting morphology of the dye aggregates showing nanosized meandering stripes with the width of approximately 1.5 nm (or brightness periodicity of approximately 3 nm). Electrostatic adsorption of the dye cations onto a mica surface as well as the intermolecular pi-pi stacking brought about the ordered nanostructures. We propose an interfacial aggregation model that shows a meandering staircase structure with the intermolecular slip angle of 60 degrees. According to the model, the AO molecule occupies a surface area of about 1.0 nm2.  相似文献   

3.
The colour change of triphenylmethane (TPM) dyes induced by surfactants at concentrations much greater than their critical micellar concentrations is found to be accompanied by enhanced fluorescence. Thus, the otherwise weak fluorescence of TPM dyes can be detected using supramicellar surfactant concentrations. In this respect, the nonionic polyoxyethylene (POE) chain-containing surfactants are found to be more efficient compared with ionic surfactants. The POE surfactants, Triton X-100, Tween-20 and Tween-60 present a polymer-like surface to the dyes, which can thus easily bind to them. At supramicellar concentrations, the hydrophobic environment formed in these micelles is effective in preventing nonradiative relaxation processes of the dyes. As a result, there is enhanced fluorescence for even micromolar concentrations of the dyes. Among the Tween series, Tween-60 being more hydrophobic leads to greater fluorescence enhancement than Tween-20. From the fluorescence properties, binding constants for dye binding to the surfactants can be determined. Thus the relative efficiency of these surfactants as binding substrates can be assessed. Another interesting observation is that the electrolyte LiCl in presence of the surfactants leads to even larger fluorescence enhancement than the surfactants alone.  相似文献   

4.
An approximately 15 microm thick polymer film doped (approximately 5 mM) with a laser dye, when coated on large pseudotabular Ag islands and pumped by a nanosecond laser, generated a single sharp stimulated emission with a bandwidth down to 2.5 nm. We attribute this novel, low-threshold (approximately 1 mJ/cm(2)) lasing action to the surface-enhanced fluorescence of the dyes very near the Ag islands. This highly surface-sensitive lasing concept was supported by the fact that the lasing action was almost completely eliminated by separating the Ag islands and the dye-doped polymer film with a molecularly thin (approximately 14 A) spacer.  相似文献   

5.
Seven fluorescent boradiazaindacene-based compounds with one or two phenyl, ethenylphenyl, and ethynylphenyl substituents at the 3- (or 3,5-) position(s) were synthesized via palladium-catalyzed coupling reactions with the appropriate 3,5-dichloroBODIPY derivative. The effect of the various substituents at the 3- (or 3,5-) position(s) on the spectroscopic and photophysical properties were studied as a function of solvent by means of UV/vis absorption, steady-state, and time-resolved fluorometry, and theoretical modeling. The emission maxima of the symmetrically 3,5-disubstituted dyes are shifted to longer wavelengths (by 30 to 60 nm) relative to the related asymmetrically 3,5-disubstituted ones. Introduction of styryl substituents causes the largest red shift in both the absorption and emission spectra. BODIPY derivatives with ethynylaryl groups also shift the spectral maxima to longer wavelengths compared to aryl-substituted ones but to a lesser degree than the styryl compounds. The quantum-chemical calculations confirm these trends and provide a rationale for the spectral shifts induced by substitution. The fluorescence quantum yields of the ethenylaryl and ethynylaryl analogs are significantly higher that those of the aryl-substituted dyes. The 3,5-diethynylaryl dye has the highest fluorescence quantum yield (approximately 1.0) and longest lifetime (around 6.5 ns) among the BODIPY dyes studied. The differences in the photophysical properties of the dyes are also reflected in their electrochemical properties where the symmetrically 3,5-disubstituted dyes display much lower oxidation potentials when compared to their asymmetric counterparts.  相似文献   

6.
We report a high-sensitivity, disposable lab-on-a-chip with a thin-film organic light-emitting diode (OLED) excitation source and an organic photodiode (OPD) detector for on-chip fluorescence analysis. A NPB/Alq3 thin-film green OLED with an active area of 0.1 cm(2) was used as the excitation source, while a CuPC/C(60) thin-film OPD with 0.6 cm(2) active area was used as a photodetector. A novel cost-effective, cross-polarization scheme was used to filter out excitation light from a fluorescent dye emission spectrum. The excitation light from the OLED was linearly polarized and used to illuminate a microfluidic device containing a 1 microL volume of dye dissolved in ethanol. The detector was shielded by a second polarizer, oriented orthogonally to the excitation light, thus reducing the photocurrent due to excitation light leakage on the detector by approximately 25 dB. The fluorescence emission light, which is randomly polarized, is only attenuated by approximately 3 dB. Fluorescence signals from Rhodamine 6G (peak emission wavelength of 570 nm) and fluorescein (peak emission wavelength of 494 nm) dyes were measured in a dilution series in the microfluidic device with emission signals detected by the OPD. A limit-of-detection of 100 nM was demonstrated for Rhodamine 6G, and 10 microM for fluorescein. This suggests that an integrated microfluidic device, with an organic photodiode and LED excitation source and integrated polarizers, can be fabricated to realize a compact and economical lab-on-a-chip for point-of-care fluorescence assays.  相似文献   

7.
Structurally unique π‐expanded diketopyrrolopyrroles (EDPP) were designed and synthesized. Strategic placement of a fluorene scaffold at the periphery of a diketopyrrolopyrrole through tandem Friedel–Crafts‐dehydration reactions resulted in dyes with supreme solubility. The structure of the dyes was confirmed by X‐ray crystallography verifying a nearly flattened arrangement of the ten fused rings. Despite the extended ring system, the dye still preserved good solubility and was further functionalized by using Pd‐catalyzed coupling reactions, such as the Buchwald–Hartwig amination. Photophysical studies of these new functional dyes revealed that they possess enhanced properties when compared with expanded DPPs in terms of two‐photon absorption cross‐section. It is further demonstrated that in addition to the initial diacetals, the final electrophilic cyclization step can also be applied to diketones. By placing two amine groups at peripheral positions of the resulting dyes, values of two‐photon absorption cross‐section on the level of 2000 GM around 1000 nm were achieved, which in combination with high fluorescence quantum yield (Φfl), generated a two‐photon brightness of approximately 1600 GM. These characteristics in combination with strong red emission (665 nm) make these new π‐expanded diketopyrrolopyrroles of major promise as two‐photon dyes for bioimaging applications. Finally, the corresponding N‐alkylated DPPs displayed a solid‐state fluorescence.  相似文献   

8.
New fluorescent azobenzene dyes and side-chain polymers have been synthesized and characterized and their photophysical properties studied. A series of azobenzene dyes having different fluorophores such as phenol (S1), phenylphenol (S2) and naphthol (S3) incorporated in them were synthesized. S2 had unusually high fluorescence with a quantum yield of phi f = 0.2 recorded in dichloromethane (DCM), whereas S1 and S3 were found to be weakly fluorescent. The azobenzene dyes were converted into methacrylate monomers having short ethyleneoxy spacers and then free radically polymerized. Phenylphenol-based azobenzene polymer (P2) continued to show fluorescence, whereas fluorescence was completely quenched in the case of phenol (P1)- and naphthol (P3)-based polymers. Phenylphenol, though twisted in the ground state is known to have a more planar geometry in the excited state--a factor that enables it to retain its fluorescence behavior even when it is incorporated as part of an azobenzene unit. In contrast, naphthol, which is a better fluorophore compared to phenylphenol, loses much of its emissive behavior upon coupling to the azobenzene unit. The extent of trans to cis photoisomerization in solution was very low (approximately 17%) for P2 after 30 min of continuous irradiation using 365 nm light, in contrast to approximately 40% for P1 under identical conditions. This is attributed to the steric repulsion brought about by the bulky phenylphenol units that restrict rotation. A 2-fold enhancement in fluorescence emission was observed for P2 upon irradiation by UV light at 360 nm, which relaxed to the original intensity in about 7 day's time. The higher emission of the cis azobenzenes is generally attributed to an inhibition of photoinduced electron transfer (PET) mechanism. The emission of P2 showed a concentration dependence which increased initially and then decreased in intensity with the formation of a new red-shifted peak at higher concentration due to aggregation. Irradiation of the fluorescence quenched highly concentrated (1 x 10(-3) M) sample of P2 showed an enhancement in emission from aggregates at 532 nm.  相似文献   

9.
Free fluorescence spectra in solution and surface-enhanced Raman scattering (SERS) and surface enhanced fluorescence (SEF) spectra of chlorin e6 and water-soluble covalent fullerene–chlorin dyads have been studied. It has been demonstrated that chlorin e6 and covalent fullerene–chlorin dyads have similar characteristic SERS spectra. The fullerene–chlorin dyads show a pronounced SEF signal, while native chlorin e6 has no fluorescence on surface, which is consistent with the theory predicting an inverse dependence of the SEF intensity on the free fluorescence quantum yield. The concentration dependence of the SEF intensity is linear for the dyads in the range 0.1–2.0 μmol/L. These effects allow one to determine, with high sensitivity, the content of fullerene–chlorin dyads with a low quantum yield of free fluorescence in solutions, which opens wide opportunities for study of biological properties of fullerene–chlorin dyads and their applications in medicine.  相似文献   

10.
The optical properties of a photoluminescent dye rhodamine B (RhB) interacting with gold nanoparticles (AuNP) have been investigated using plasmonic absorbance, fluorescence, and resonance elastic light scattering (RELS) spectroscopy. We have found that these interactions result in a multimodal coupling that influence optical transitions in RhB. In absorbance measurements, we have observed for the first time the coupling resulting in strong screening of RhB π-π* transitions, likely caused by a contact adsorption of RhB on a conductive surface of AuNP. The nanoparticles quench also very efficiently the RhB fluorescence. We have determined that the static quenching mechanism with a non-F?rster fluorescence resonance energy transfer (FRET) from RhB molecules to AuNP is involved. The Stern-Volmer dependence F(0)/F = f(Q) shows an upward deviation from linearity, attributed to the ultra-high quenching efficiency of AuNP leading to the new extended Stern-Volmer model. A sharp RELS peak of RhB alone (λ(max) = 566 nm) has been observed for the first time and attributed to the resonance fluorescence and enhanced scattering. This peak is completely quenched in the presence of AuNP(22nm). Our quantum mechanical calculations confirm that the distance between AuNP surface and conjugated π-electron system in RhB is well within the range of plasmonic fields extending from AuNP. The optical transition coupling to plasmonic oscillations and the efficient energy transfer due to the interactions of fluorescent dyes with nanoparticles are important for biophysical studies of life processes and applications in nanomedicine.  相似文献   

11.
Heptamethine cyanine dyes enable deep tissue fluorescence imaging in the near infrared (NIR) window. Small molecule conjugates of the benchmark dye ZW800-1 have been tested in humans. However, long-term imaging protocols using ZW800-1 conjugates are limited by their instability, primarily because the chemically labile C4′-O-aryl linker is susceptible to cleavage by biological nucleophiles. Here, we report a modular synthetic method that produces novel doubly strapped zwitterionic heptamethine cyanine dyes, including a structural analogue of ZW800-1 , with greatly enhanced dye stability. NIR-I and NIR-II versions of these doubly strapped dyes can be conjugated to proteins, including monoclonal antibodies, without causing undesired fluorophore degradation or dye stacking on the protein surface. The fluorescent antibody conjugates show excellent tumor-targeting specificity in a xenograft mouse tumor model. The enhanced stability provided by doubly strapped molecular design will enable new classes of in vivo NIR fluorescence imaging experiments with possible translation to humans.  相似文献   

12.
A simple synthesis route with a high yield of novel asymmetric cyclopentanone dyes 3a—3e and their highly two-photon up-converted fluorescences are reported. The dyes have good solubilities in most of ordi-nary solvents, a wide UV absorption wavelength range from 380—540 nm, and high fluorescence quantum yields. The two-photon absorption cross-sections of dyes 3a—M were measured in chloroform by a two-pho-ton induced fluorescence method. All of these properties of the new dyes make them suitable for being used as two-photon fluorescent probes.  相似文献   

13.
Amphiphilic pyrene/perylene bis-chromophore dyes were synthesized from unsymmetrically substituted perylene bisimide dyes, which were obtained through three synthetic methods. The optical and aggregation behaviors of these functional dyes were studied by means of UV/Vis absorption and fluorescence spectroscopy, dynamic light scattering, and TEM. These dyes are highly fluorescent and cover the whole visible-light region. A donor/acceptor dye displays intramolecular fluorescence resonance energy transfer (FRET), with a high efficiency of up to 96.4 % from pyrene to perylene bisimide chromophores, which leads to a high fluorescence color sensitivity to environmental polarity. Under a λ=365 nm UV lamp, the light-emitting colors of the donor/acceptor dye change from green to yellow with increasing solvent polarity, which demonstrates application potential as a new class of FERT probes. The donor/acceptor dye in water was assembled into hollow vesicles with a narrow size distribution. The bilayer structure of the vesicular wall was directly observed by means of TEM. These vesicular aggregates in water are fluorescent at λ=650–850 nm within the near-infrared region.  相似文献   

14.
The photophysical properties of two typical cyanine dyes [3,3'-diethyl-9-methyl-thiacarbocyanine iodide (dye A) and anhydro-3,3'-disulfopropyl-5,5'-diphenyl-9-ethyloxacarbocyanine hydroxide (dye B)] in the absence and presence of TiO(2) colloids have been investigated by UV-visible spectroscopy, (1)H-NMR spectroscopy, fluorescence spectroscopy, fluorescence lifetime measurements, and ESR measurements. It was found from the absorption spectra and NMR results that there are two isomers in the ground state of these dyes. Steady-state fluorescence spectra show that the fluorescence intensities of dye A and dye B are enhanced and quenched by TiO(2) colloids, respectively. Time-resolved fluorescence lifetime measurements indicate that the lifetimes of dye A and dye B in the presence of TiO(2) colloids are longer and shorter than those obtained in the absence of TiO(2) colloids, respectively. ESR measurements demonstrate that the electron transfer efficiency from (1)dye B* to the conduction band of TiO(2) is much larger than that from (1)dye A* to the conduction band of TiO(2). The different fluorescence behavior of dye A and dye B can be intepreted in terms of whether phi(Tr,nr)(0)-phi(Tr,nr) (the reduction of the quantum yield for radiationless transition in the excited singlet state (1)dye* caused by the TiO(2) colloids) is larger or smaller than phi(ET) (the quantum yield of electron transfer from (1)dye* to the conduction band of TiO(2) colloids).  相似文献   

15.
The temperature dependences of the induced dichroic ratios (DRs) of azo dyes after their photoalignment in thin films 80 to 200 nm thick are studied. It is found that the DR values of layers containing dyes of the benzeneazodiphenyl series fall from 6.0 to 1.6 as the temperature rises from 60 to 130°C, respectively. A reduction in induced DR as the temperature rises (from 20 to 100°C) is also observed for the thin films of the dyes of benzeneazo-5,5’-dioxodibenzothiophene group. The absence of induced DR after irradiation with polarized light at 100°C indicates there is no alignment of molecules at this temperature.  相似文献   

16.
This article describes a series of nine complexes of boron difluoride with 2′‐hydroxychacone derivatives. These dyes were synthesized very simply and exhibited intense NIR emission in the solid state. Complexation with boron was shown to impart very strong donor–acceptor character into the excited state of these dyes, which further shifted their emission towards the NIR region (up to 855 nm for dye 5 b , which contained the strongly donating triphenylamine group). Strikingly, these optical features were obtained for crystalline solids, which are characterized by high molecular order and tight packing, two features that are conventionally believed to be detrimental to luminescence in organic crystals. Remarkably, the emission of light from the π‐stacked molecules did not occur at the expense of the emission quantum yield. Indeed, in the case of pyrene‐containing dye 4 , for example, a fluorescence quantum yield of about 15 % with a fluorescence emission maximum at 755 nm were obtained in the solid state. Moreover, dye 3 a and acetonaphthone‐based compounds 1 b , 2 b , and 3 b showed no evidence of degradation as solutions in CH2Cl2 that contained EtOH. In particular, solutions of brightly fluorescent compound 3 a (brightness: ε×Φf=45 000 M ?1 cm?1) could be stored for long periods without any detectable changes in its optical properties. All together, these new dyes possess a set of very interesting properties that make them promising solid‐state NIR fluorophores for applications in materials science.  相似文献   

17.
The photoprocesses of two bis-benzimidazole dyes, Hoechst 33258 (1) and an analog, where the phenolic group in p-position is replaced by an ethoxy group, Hoechst 33342 (2), were studied. For 1 and 2 in aqueous solution the quantum yield of fluorescence is strongly pH dependent; it decreases from a maximum value of phi f = 0.4 at pH 5 to phi f = 0.02 at pH 8. The effects of absorption and fluorescence, induced by sodium dodecyl sulfate surfactants below and above the critical micelle concentration and by double-stranded DNA, are interpreted by assuming that in bulk aqueous solution the dyes are essentially present as monomers. The strong enhancement of phi f, when the dye is bound to double-stranded DNA or solubilized in micelles, is suggested to be due to different environments at the benzimidazole rings. A quinoid intermediate with absorption maximum at 380 nm is formed for 1 at neutral pH using lambda exc = 248 or 308 nm. N-centered radicals of 1 or 2 in aqueous solution were observed by laser flash photolysis after electron ejection using wavelengths of 193 or 248 nm (mono and biphotonic, respectively). The precursor radical cation escaped observation but is transformed into the above radicals by deprotonation. Electron transfer from 1 in aqueous solution to triplet acetone takes place, and subsequent deprotonation is proposed to yield N-centered radicals. In addition, energy transfer from acetone to 1 is suggested, leading to T-T absorption with the maximum at 700 nm. The photoprocesses are discussed and the results compared with those known from pulse radiolysis.  相似文献   

18.
Fluorescent probes are of increasing interest in medicinal and biological applications for the elucidation of the structures and functions of healthy as well as tumour cells. The quality of these investigations is determined by the intensity of the fluorescence signal. High dye/carrier ratios give strong signals. However, these are achieved by the occupation of a high number of derivatisation sites and therefore are accompanied by strong structural alterations of the carrier. Hence, polyvalent substances containing a high number of fluorescent dyes would be favourable because they would allow the introduction of many dyes at one position of the compound to be labelled.A large number of different dyes have been investigated to determine the efficiency of coupling to a dendrimer scaffold and the fluorescence properties of the oligomeric dyes, but compounds that fulfil the requirements of both strong fluorescence signals and reactivities are rare. Herein we describe the synthesis and characterisation of dye oligomers containing dansyl-, 7-nitro-2,1,3-benzoxadiazol-4-yl- (NBD), coumarin-343, 5(6)-carboxyfluorescein and sulforhodamine B2 moieties based on polyamidoamine (PAMAM) dendrimers. The PAMAM dendrimers were synthesised by an improved protocol that yielded highly homogeneous scaffolds with up to 128 conjugation sites. When comparing the fluorescent properties of the dye oligomers it was found that only the dansylated dendrimers met the requirements of enhanced fluorescence signals. The dendrimer containing 16 fluorescent dyes was conjugated to the anti-epidermal-growth-factor receptor (EGFR) antibody hMAb425 as a model compound to show the applicability of the dye multimer compounds. This conjugate revealed a preserved immunoreactivity of 54%.We demonstrate the applicability of the dye oligomers to the efficient and applicable labelling of proteins and other large molecules that enables high dye concentrations and therefore high contrasts in fluorescence applications.  相似文献   

19.
Electrofluorochromic devices (EFCDs) that allow the modulation of the light emitted by electroactive fluorophores are very attractive in the research field of optoelectronics. Here, the electrofluorochromic behaviour of a series of squaraine dyes was studied for the first time. In solutions, all compounds are photoluminescent with maxima located in the range 665–690 nm, characterized by quantum yields ranging from 30% to 4.1%. Squaraines were incorporated in a polymer gel used as an active layer in all-in-one gel switchable EFCDs. An aggregation induced quenching occurs in the gel phase, causing a significant decrease in the emission quantum yield in the device. However, the squaraines containing the thieno groups (thienosquaraines, TSQs) show a panchromatic emission and their electrofluorochromism allows the tuning of the fluorescence intensity from 500 nm to the near infrared. Indeed, the application of a potential difference to the device induces a reversible quenching of their emission that is significantly higher and occurs at shorter switching times for TSQs-based devices compared to the reference squaraine dye (DIBSQ). Interestingly, the TSQs fluorescence spectral profile becomes more structured under voltage, and this could be explained by the shift of the aggregates/monomer equilibrium toward the monomeric species, due to electrochemical oxidation, which causes the disassembling of aggregates. This effect may be used to modulate the colour of the fluorescence light emitted by a device and paves the way for conceiving new electrofluorochromic materials based on this mechanism.  相似文献   

20.
Abstract— A discussion is given of the photophysical and photochemical consequences of the binding of dyes and of pigments of biological importance to polymeric substrates. The modification of the photochemical properties induced by dye binding can in large part be ascribed to the known changes in photophysical properties of dyes engendered by such interactions. Principally, these involve enhanced formation of metastable species of dye molecules and decreased opportunity for self-quenching. In photochemical terms, dye binding thus enhances susceptibility to photoreduction, causes an increase in the quantum yield of photoreduction with increasing concentration of bound dye, and induces enhanced ability to act as a sensi-tizer in photoreduction. Paradoxically, dye binding decreases the ability of the bound dye to act as a sensitizer in photoxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号