首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Regioselective deuteration of 1-X-C2B10H12 (X = 2, 7) cage systems with C6D6/AlCl3 is correlated to ab initio calculational results on a [C2B10H13]+ intermediate. Full geometry optimizations of pertinent [C2B10H13]+ isomers, derived from each of the two 1-X-C2B10H12 carborane isomers, result in cage geometries not unlike the (nearly) icosahedral starting carborane. Each isomer contains a BH2 group having an acute H-B-H angle, long B–H bonds, and a very short H · · · H distance, hinting that the pertinent boron shares the electrons of a hydrogen molecule σ pair. It is suggested that the structural differences between the BH2 group of [C2B10H13]+ and the CH2 group of the benzenium ion, [C6H7]+ (the intermediate strongly intimated upon protonation of benzene), can be explained, in part, by (a) the availability of the π-ring electrons for bonding to the (extra) proton in the latter and (b) the unavailability of π electrons from the carborane. Thus, the C2B10H12 cage is most probably very reluctant to give up a cage electron pair in order to assist in bonding to an (externally bound) proton. Instead, it is more probable that “hydridic” B–H sigma electrons could very well play the important role in providing bonding to the attacking proton. © 1998 John Wiley & Sons, Inc. Heteroatom Chem 9:95–102, 1998  相似文献   

2.
We investigated various isomers of B8 clusters with ab initio (MP2) and density function theory (DFT) methods (B3LYP and B3PW91). Nineteen B8 isomers were determined to be local minima on their potential energy hypersurfaces by the B3LYP, B3PW91, and MP2 methods. Fifteen of these structures are first reported. The most stable neutral B8 cluster is the regular heptagon, with another boron atom at the center (D7h, triplet), in agreement with results reported previously. The natural bond orbital (NBO) analysis and nucleus‐independent chemical shifts (NICS) further reveal that the most stable species have delocalized π bond and multicentered σ bonds and therefore exhibit multiple‐fold aromaticity. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

3.
A density functional theory investigation on the structural and bonding properties of B3S n ?/0 (n = 2–4) series has been performed. Based on B3LYP and CCSD(T) calculations, we present the linear D ∞h B3S2 ? (1, 3Σg) and D ∞h B3S2 (2, 2Πu), the Y-shaped C 2v B3S3 ? (3, 1A1) and C 2v B3S3 (4, 2B2), and perfectly planar structures C 2v B3S4 ? (5, 1A1) and C 2v B3S4 (6, 2B2) that contain rhombic B2S2 rings. The 16 ground-state structures are planar with linear “B–B–B” core, in which the first and the second S atoms prefer to bond terminally to the terminal B, and the third S atom bonds to the center B, however, when the third S atom is added with the fourth, the atoms tend to be in the bridging positions of two adjacent B atoms. The growth pattern of B3S n ?/0 (n = 2–4) clusters helps to understand the structural properties of the other small boron sulfide clusters. Bonding analyses reveal that a dual or single three-center one-electron (3c–1e) π hypervalent bonds located over the “B–B–B” core of D ∞h B3S2 ? (1) and B3S2 (2), respectively. While C 2v B3S4 ? (5) and B3S4 (6) with rhombic B2S2 rings as the center with –BS and –S units all possess 4c–4e bonds (o-bonds) in the rhombic B2S2 rings.  相似文献   

4.
The passage of D3dC2H6 and B2H6 toward a D2 h bridged structure, and the motion of a methyl proton maintaining C symmetry in C2H inf5 sup+ and CH3BH2 are described by integral Hellmann-Feynman computations in a Frost floating spherical Gaussian basis. Marron and Weare's variational corrections to the integral Hellmann-Feynman formula forAE between statesA andB are evaluated with variational functions of the form η(ψA/SABB)) used to refine the stateB. An analogous function ξ(ψB/SABA) refines state A. Both η and ξ are chosen variationally to minimize Marron and Weare's functional. No obvious advantage of the variational method became apparent in this simple application.  相似文献   

5.
Planar boron clusters have often been regarded as “π-analogous” to aromatic arenes because of their similar delocalized π-bonding. However, unlike arenes such as C5H5 and C6H6, boron clusters have not previously shown the ability to form sandwich complexes. In this study, we present the first sandwich complex involving beryllium and boron, B7Be6B7. The global minimum of this combination adopts a unique architecture having a D6h geometry, featuring an unprecedented monocyclic Be6 ring sandwiched between two quasi-planar B7 motifs. The thermochemical and kinetic stability of B7Be6B7 can be attributed to strong electrostatic and covalent interactions between the fragments. Chemical bonding analysis shows that B7Be6B7 can be considered as a [B7]3−[Be6]6+[B7]3− complex. Moreover, there is a significant electron delocalization within this cluster, supported by the local diatropic contributions of the B7 and Be6 fragments.  相似文献   

6.
Density functional theory (DFT) method with B3LYP functional and 6-311++G(d,p) basis set has been used to predict the geometries, relative stabilities, electronic structures and bonding analysis of Mixed AlmBn?mH n 2? and CmBn?mH n 2?m (n = 6, 10, 12 and m = 1, 2) clusters; being compared to the BnH n 2? ones. Therefore, the DFT results suggest that the replacing of boron by aluminium or carbon is governed by Natural net charges following Gimar’s and Williams’s rules. The AlmBn?mH n 2? structures are relatively distorted compared to those of BnH n 2? and CmBn?mH n 2?m . In AlmBn?mH n 2? structures Al atoms prefer the adjacent sites, however for the C2Bn?2Hn cluster cages, the carbon atoms are positioned at diametrically opposed sites. The large HOMO–LUMO gaps show that the predicted clusters have chemical stabilities, principally, those of AlmBn?mH n 2? ones, which are not experimentally isolated. The optimized geometries obtained through boron substitution by Al and C lead to compactness and to contracted structures, respectively, where B–B bonds are the shortest in mono- and di-carbaboranes.  相似文献   

7.
The structures, stability patterns of C26H n (n = 2) formed from the initial D 3h C26 fullerene were investigated by use of second-order-Moller–Plesset perturbation theory. The study of the stability patterns of hydrogenation reaction on C26 cage revealed that type (β) carbons were the active site and the analyses of π-orbital axis vector indicated that the reactivity of C26 was the result of the high strain and the hydrogenation reaction on C26 cage was highly exothermic. The calculated 13C NMR spectra of C26H n (n = 2) predicted that the two sp 3 hybridization carbons in C26H n (n = 2) obviously moved to high field compare with that in D 3h C26. Hence, the C26H2 should be obtained and detected experimentally. Similarly, the structures and reaction energies of C26H n (n = 4, 6, 8) were further studied at HF/6-31G*, B3LPY/6-31G* and MP2/6-31G* level. The results suggested the hydrogenation products of C26, C26H n (n = 4, 6, 8), were more stable than the C26 cage.  相似文献   

8.
Quantum-chemical calculations of giant flattened fullerenes C n (lentil-shaped) have been carried out. The topology, molecular and electronic structure of these fullerenes have been studied. Such molecules consist of two identical coronenoid fragments of a graphite layer, which are arranged one above the other, and a system of polycondensed five- and six-membered cycles, which form a side surface of the cluster. Polyhedral structures with isolated pentagons of three symmetry types (D 6h ,D 6d , andD 3h ) have been considered. The topology of these structures is described in terms of planar molecular graphs. Electronic structures of eleven flattened lentil-shaped C n clusters (n = 72–216) have been studied in the π approximation. Most of the considered systems have closed or quasi-closed electron shells (according to Hückel) and rather large energy gaps separating the highest occupied and lowest unoccupied MO, which is indicative of their kinetic stability. Fragments of the potential energy surfaces of the C72 and C96 fullerenes have been studied by the MNDO, AM1, and MNDO/PM3 methods. For the C96 cluster, two local energy minima, which correspond to the lentil-shaped isomers withD 6h andD 6d symmetry, have been determined. As a result of optimization of geometric parameters, it was found that all three methods give close values of heights (H = 6.7 Å) and diameters (D = 9.8 Å) for both isomers. The clusters change to quasi-two-dimensional systems (H«D) with increasing sizes of coronenoid fragments.  相似文献   

9.
The D2 loss from C2D+6 ions and the HD loss from C2D5H+ ions has been investigated in a photoelectron photoion coincidence experiment employing a reflecting ion time of a flight mass spectrometer (Reflectron). The experiment is able to distinguish the metastable formation of C2D+4 ions (m/z = 32) from C2D+6 ions by D2 loss and from C2D5H+ ions by HD loss simultaneously in a mixture of deuterated ethanes. The breakdown curves of the title reactions are presented and compared to the H2 loss from C2H+6 ions. The HD loss from C2D5H+ is shifted by 67 meV and the D2 loss from C2D+6 is shifted by 108 meV with respect to the H2 loss from C2H+6. This shift reflects a strong kinetic isotope effect which is most likely due to tunneling of H/D atoms through a barrier.  相似文献   

10.
Through integrative consideration of NICS, MO, MOC and NBO, we precisely investigated delocalization and bonding characters of C6, C6H6, B3N3 and B3N3H6 molecules. Firstly, we originally discovered and testified that C6 cluster was sp2 hybridization. Negative NICS values in 0 and 1 Å indicated that C6 had δ and Π aromaticity. Secondly, B3N3 with sp2 hybridization had obvious δ aromaticity. Finally, WBI values approved that there were delocalization in C6, C6H6 and B3N3 molecules, but B3N3H6 structure did not have delocalization with the WBI 1.0. Moreover, total WBI values of carbon, boron and nitrogen atoms were four, three and three, respectively. Namely, the electrons of B3N3H6 and B3N3 were localized in nitrogen atoms and they did not form delocalized bonding. In a word, bonding characters of carbon, boron and nitrogen atoms were dissimilar although the molecules composed of carbon, boron and nitrogen were regarded as isoelectronic structures.  相似文献   

11.
Preparation and Crystal Structures of Dipyridiniomethane Monohalogenohydro-closo-Dodecaborates(2?), [(C5H5N)2CH2][B12H11X]; X = Cl, Br, I [B12H12]2? reacts with dihalogenomethanes CH2X2 in presence of trifluoro acetic acid, yielding the monohalogenododecaborates [B12H11X]2? (X = Cl, Br, I), which are separated by ion exchange chromatography on diethylaminoethyl(DEAE) cellulose from the starting compound and higher halogenated products. The X-ray structure determinations of [(C5H5N)2CH2][B12H11Cl] · 2(CH3)2SO (orthorhombic, space group Pnma, a = 17.351(6), b = 16.034(5), c = 9.659(2) Å, Z = 4) and of the isotypic bromo and iodo compounds [(C5H5N)2CH2][B12H11X] (monoclinic, space group P21/n, Z = 4; for X = Br: a = 7.339(2), b = 15.275(3), c = 16.761(4) Å, β = 96.80(2)°; for X = I: a = 7.4436(8), b = 15.3510(8), c = 16.9213(16) Å, ß = 97.326(7)°) exhibit crystal lattices build up by columns of substituted boron clusters and angular dications [(C5H5N)2CH2]2+ orientated along the shortest axis which are assembled to alternating layers.  相似文献   

12.
We examine theoretically the three channels that are associated with the detachment of a single water molecule from the aqueous clusters of the alkaline earth dications, [M(H2O) n ]2+, M = Mg, Ca, Sr, Ba, n ≤ 6. These are the unimolecular water loss (M2+(H2O) n?1 + H2O) and the two hydrolysis channels resulting the loss of hydronium ([MOH(H2O) n?2]+ + H3O+) and Zundel ([MOH(H2O) n?3]+ + H3O+(H2O)) cations. Minimum energy paths (MEPs) corresponding to those three channels were constructed at the Møller–Plesset second order perturbation (MP2) level of theory with basis sets of double- and triple-ζ quality. We furthermore investigated the water and hydronium loss channels from the mono-hydroxide water clusters with up to four water molecules, [MOH(H2O) n ]+, 1 ≤ n ≤ 4. Our results indicate the preference of the hydronium loss and possibly the Zundel-cation loss channels for the smallest size clusters, whereas the unimolecular water loss channel is preferred for the larger ones as well as the mono-hydroxide clusters. Although the charge separation (hydronium and Zundel-cation loss) channels produce more stable products when compared to the ones for the unimolecular water loss, they also require the surmounting of high-energy barriers, a fact that makes the experimental observation of fragments related to these hydrolysis channels difficult.  相似文献   

13.
It has been a long‐sought goal in cluster science to discover stable atomic clusters as building blocks for cluster‐assembled nanomaterials, as exemplified by the fullerenes and their subsequent bulk syntheses. 1 , 2 Clusters have also been considered as models to understand bulk properties, providing a bridge between molecular and solid‐state chemistry. 3 Because of its electron deficiency, boron is an interesting element with unusual polymorphism. While bulk boron is known to be dominated by the three‐dimensional (3D) B12 icosahedral motifs, 4 new forms of elemental boron are continuing to be discovered. 5 In contrast to the 3D cages commonly found in bulk boron, in the gas phase two‐dimensional (2D) boron clusters are prevalent. 6 8 The unusual planar boron clusters have been suggested as potential new bulking blocks or ligands in chemistry. 6a Herein we report a joint experimental and theoretical study on the [Ta2B6] and [Ta2B6] clusters. We found that the most stable structures of both the neutral and anion are D6h bipyramidal, similar to the recently discovered MB6M structural motif in the Ti7Rh4Ir2B8 solid compound. 9   相似文献   

14.
The structures of B32 and B32H2–32 with Ih symmetry have been investigated by means of ab initio calculations at STO-3G level. The relationship between molecular orbitals of them has been analyzed and their bonding properties have been discussed. Then the possibility of their existence, as well as the similarity and difference between B32 (B32H2–32) and C60 (C60H60) have been inferred.  相似文献   

15.
We performed global minimum searches for the BnHn+2 (n=2‐5) series and found that classical structures composed of 2c–2e B? H and B? B bonds become progressively less stable along the series. Relative energies increase from 2.9 kcal mol?1 in B2H4 to 62.3 kcal mol?1 in B5H7. We believe this occurs because boron atoms in the studied molecules are trying to avoid sp2 hybridization and trigonal structure at the boron atoms, as in that case one 2p‐AO is empty, which is highly unfavorable. This affinity of boron to have some electron density on all 2p‐AOs and avoiding having one 2p‐AO empty is a main reason why classical structures are not the most stable configurations and why multicenter bonding is so important for the studied boron–hydride clusters as well as for pure boron clusters and boron compounds in general.  相似文献   

16.
The photoabsorption cross section of molecular H2O and D2O has been determined in the range from hν = 10eV to 20 eV with 0.03 Å resolution. A refined analysis of the Rydberg series including the rotational line shapes of several bands to locate the band origins and a comparison with recent ab initio calculations is given. In the region of continuous absorption we have assigned a p-type and an s-type Rydberg series leading to the 2A1 and the 2B2 state respectively with quantum defects δ ≈ 0.75 and δ ≈ 1.36.  相似文献   

17.
The geometrical structures and properties of small cationic boron clusters B(n = 2–14) have been investigated using the local spin density (LSD ) formalism. The nonlocal correction has also been calculated. The linear search for minima on the potential energy surface has been performed using analytical gradients of the LSD total energy. Most of the final structures of the cationic boron clusters prefer planar or quasi-planar nuclear arrangements and can be considered as fragments of a planar surface or as segments of a sphere. The calculated adiabatic ionization potentials of Bn exhibit features that are analogous to those of measured ionization potentials for boron clusters. Most of the calculated normal modes of the cationic clusters have frequencies that are around 1000 cm?1 and have strong infrared intensities, and they correspond quite well with analogous properties of solid boron. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
A series of novel cationic gemini surfactants, p-[C n H2n+1N+(CH3)2CH2CH(OH)CH2O]2C6H4·2Cl? [A(n = 12), B(n = 14) and C(n = 16)], containing a spacer group with two flexible and hydrophilic groups (2-hydroxy-1,3-propylene) on both sides of a rigid and hydrophobic group (1,4-dioxyphenylene) has been synthesized by the reaction of hydroquinone diglycidyl ether with N,N-dimethylalkylamine and N,N-dimethylalkylamine hydrochloride. Their surface-active properties have been investigated by surface tension measurement. The critical micelle concentration (cmc) values of the synthesized cationic gemini surfactants are one order of magnitude lower than those of their corresponding monomeric surfactants (C n H2n + 1N+(CH3)3·Cl?). Both the cmc and surface tension at the cmc (γcmc) of A are lower than those of p-[C12H25N+(CH3)2CH2]2C6H4·2Cl? (D). The novel cationic gemini surfactants A and B also show good foaming properties.  相似文献   

19.
Spectral simulation was used to analyze the molecular rovibrational bands of D2H and H2D at 5600 Å. These bands were previously measured by the ion beam neutralization method. They were assigned to the electronic 3p2B1 ? 2s2A1 and vibrational (ν - ν″) = (0, 0, 0,-0, 0, 0) transitions. Least squares fits to the experimental line-positions were made to determine the asymmetric rotator constants A, B and C for the 2s2A1 and 3p2B1 ν = 0 states of D2H and H2D, hitherto unknown. Lorentz line-profiles were assumed for the D2H and H2D rotational lines, whose widths are mainly governed by the lifetimes of the lower states. The bands at 5600 Å were simulated and the 2s2A1 state lifetimes were estimated to be σ ≥ 0.5 ± 0.2 ps for D2H and σ ≥ 0.4 ± 0.2 ps for H2D. Vibrational constants of D3 and D2H in the 2s2A1 states are determined from the positions of the 0-0 and 0-1 vibrational bands given in respective experimental spectra previously measured. For the first time the vibrational constants ω1 and ω2 of the 2s2A1 state of H2D were estimated from the positions of the 0-0 and 0-1 band maxima. These vibrational constants are compared with the corresponding vibrational constants of their ions.  相似文献   

20.
A systematic density functional theory and wave function theory investigation performed in this work reveals a planar-to-icosahedral structural transition between n = 4–5 in the partially hydrogenated B12H n 0/− clusters (n = 1–6) upon hydrogenation of all-boron B120/−. Coupled cluster calculations with triple excitations (CCSD(T)) indicate that a distorted icosahedral B12H6 cluster with C2 symmetry is overwhelmingly favored (by 35 kcal/mol) over the recently proposed perfectly planar borozene (D3h B12H6) (Szwacki et al., Nanoscale Res Lett 4:1085, 2009) which proves to be a high-lying local minimum. A similar 2D–3D structural transition occurs to the corresponding boron boronyl analogues of B12(BO) n with n –BO terminals. Detailed adaptive natural density partitioning (AdNDP) analyses reveal the bonding patterns of these quasi-planar or cage-like clusters which are characterized with delocalized σ and π molecular orbitals. The electron detachment energies of the concerned anions and excitation energies of the neutrals are also predicted to facilitate their future experimental characterizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号