首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Dynamic contrast-enhanced magnetic resonance imaging (MRI) is widely used for measuring perfusion and blood volume, especially cerebral blood volume (CBV). In case of blood-brain barrier (BBB) disruption, the conventional techniques only partially determine the pharmacokinetic parameters of contrast medium (CM) exchange between different compartments. Here a modified pharmacokinetic model is applied, which is based on the bidirectional CM exchange between blood and two interstitial compartments in terms of the fractional volumes of the compartments and the vessel permeabilities between them. The evaluation technique using this model allows one to quantify the fractional volumes of the different compartments (blood, cells, slowly and fast enhancing interstitium) as well as the vessel permeabilities and cerebral blood flow (CBF) with a single T1-weighted dynamic MRI measurement. The method has been successfully applied in 25 glioma patients for generating maps of all of these parameters. The fractional volume maps allow for the differentiation of glioma vascularization types. The maps show a good correlation with the histological grading of these tumors. Furthermore, regions with enhanced interstitial volumes are found in high-grade gliomas. Differences in permeability maps of Gd-DTPA apart from BBB disruption do not exist between different tissue types. CBF measured in high-grade glioma is less pronounced than it would be expected from their blood volume. Therefore pharmacokinetic imaging provides an additional tool for glioma characterization.  相似文献   

2.
A rat model of transient suture occlusion of one middle cerebral artery (MCA) was used to create a unilateral reperfused cerebral ischemic infarct with blood-brain barrier (BBB) opening. Opening of the BBB was visualized and quantitated by magnetic resonance (MR) contrast enhancement with a Look-Locker T(1)-weighted sequence either following an intravenous bolus injection (n=7) or during a step-down infusion (n=7) of gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA). Blood levels of Gd-DTPA after either input were monitored via changes in sagittal sinus relaxation rate. Blood-to-brain influx constants (K(i)) were calculated by Patlak plots. On the basis of the MRI parameters and lesion size, the ischemic injury was determined to be similar in the two groups. The bolus injection input produced a sharp rise in blood levels of Gd-DTPA that declined quickly, whereas the step-down infusion led to a sharp rise that was maintained relatively constant for the period of imaging. Visual contrast enhancement and signal-to-noise (S/N) ratios were better with the step-down method (S/N=1.8) than with bolus injection (S/N=1.3). The K(i) values were not significantly different between the two groups (P>.05) and were around 0.005 ml/(g min). The major reason for the better imaging of BBB opening by the step-down infusion was the higher amounts of Gd-DTPA in plasma and tissue during most of the experimental period. These results suggest that step-down MR contrast agent (MRCA) administration schedule may be more advantageous for detection and delineation of acute BBB injury than the usually used bolus injections.  相似文献   

3.

Background  

The link between early blood- brain barrier (BBB) breakdown and endothelial cell activation in acute stroke remain poorly defined. We hypothesized that P-selectin, a mediator of the early phase of leukocyte recruitment in acute ischemia is also a major contributor to early BBB dysfunction following stroke. This was investigated by examining the relationship between BBB alterations following transient ischemic stroke and expression of cellular adhesion molecule P-selectin using a combination of magnetic resonance molecular imaging (MRMI), intravital microscopy and immunohistochemistry. MRMI was performed using the contrast, gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) conjugated to Sialyl Lewis X (Slex) where the latter is known to bind to activated endothelium via E- or P selectins. Middle cerebral artery occlusion was induced in male C57/BL 6 wild-type (WT) mice and P-selectin-knockout (KO) mice. At 24 hours following middle cerebral artery occlusion, T1 maps were acquired prior to and following contrast injection. In addition to measuring P- and E-selectin expression in brain homogenates, alterations in BBB function were determined immunohistochemically by assessing the extravasation of immunoglobulin G (IgG) or staining for polymorphonuclear (PMN) leukocytes. In vivo assessment of BBB dysfunction was also investigated optically using intravital microscopy of the pial circulation following the injection of Fluorescein Isothiocyanate (FITC)-dextran (MW 2000 kDa).  相似文献   

4.
INTRODUCTION: The blood-brain barrier (BBB) plays an important role in the pathophysiology of a number of central nervous system disorders. In the past, a number of laboratory techniques have been proposed to quantify permeability coefficient ki, an important index of barrier function. Recently, magnetic resonance imaging (MRI) has been used to estimate ki based on graphical plot technique. The MR technique was found to be in good agreement with the gold standard, quantitative autoradiography (QAR). However, a reduced image signal-to-noise ratio, among other factors such as partial volume effects, did not allow reliable estimation of permeability coefficients. This proof-of-principle study proposes the use of Kalman filter as a filtering technique for a reliable estimation of permeability coefficients. The results are compared to those obtained using the Wiener filter technique. MATERIALS AND METHODS: MRI experiments were performed in Wistar rats (N=2) using a 4.7-T Bruker Biospec MR system (Bruker Biospin, Billerica, MA). After acquiring localizer images, T2-weighted diffusion-weighted imaging images were acquired. Finally, a rapid T1 mapping protocol was implemented to acquire one pre-gadolinium diethylenetriamine pentaacetic acid baseline data set followed by postinjection data sets at 3-min intervals for 45 min. Data were postprocessed with and without the application of Kalman and Wiener filters to obtain an estimate of ki. RESULTS AND DISCUSSION: Comparing T1 maps, Patlak plots and permeability maps with and without the Kalman filtering presented several interesting observations. Kalman-filtered Patlak plots, compared to nonfiltered plots, showed that discrete data points on the plot were closer to the line fit. The number of time points used for the construction of the graphical plot had no effect on permeability coefficient estimates when the Kalman filter was used. A box-and-whiskers plot showed longer Y-error bars for nonfiltered and Wiener data compared to Kalman-filtered data. These observations suggest that it may be possible to obtain reliable permeability coefficient estimates in a short study time by applying the Kalman filter to the data. Future work involves investigating the application of this filter on a large-sample-size animal study and evaluating the role of partial volume effects on BBB permeability estimation.  相似文献   

5.
The purpose of this study was to demonstrate a technique, in a pilot study, for measuring abnormal capillary permeability in synovial tissue of rabbit arthritic knees using dynamic MRI with a gadolinium-based blood pool agent. Arthritis, simulating rheumatoid arthritis, was induced in knees of 8 rabbits by intra-articular injection of carrageenan (n = 4) or ovalbumin (n = 4). Sequential fat presaturated T1-weighted Spoiled Grass images were obtained before and up to 30 min after intravenous administration of albumin-(Gd-DTPA)30. Estimates of synovial tissue plasma-volume (PV), fractional-leak-rate (FLR), and permeability-surface-area-product (PS) were computed. Histologic correlation was obtained in the corresponding regions. Dynamic MRI showed extravasation of albumin-(Gd-DTPA)30 into hypertrophic synovium in six of the eight arthritic knees. Histologic examination of these six knees showed markedly inflamed synovium. The two knees that did not show abnormal vascular permeability contained non-hypertrophic synovium. None of the rabbits showed abnormal permeability in muscle. MRI derived microvascular characteristics (PV, FLR and PS) correlated positively (r2 = 0.51, 0.97 and 0.86) with the histology. Factors involving the structural and functional microvascular characteristics of synovial tissue can be estimated non-invasively using albumin-(Gd-DTPA)30. This technique may be useful for monitoring disease progression and treatment response in rheumatoid arthritis.  相似文献   

6.
In pharmacological magnetic resonance imaging (phMRI) with anesthetized animals, there is usually only a single time window to observe the dynamic signal change to an acute drug administration since subsequent drug injections are likely to result in altered response properties (e.g., tolerance). Unlike the block-design experiments in which fMRI signal can be elicited with multiple repetitions of a task, these single-event experiments require stable baseline in order to reliably identify drug-induced signal changes. Such factors as subject motion, scanner instability and/or alterations in physiological conditions of the anesthetized animal could confound the baseline signal. The unique feature of such functional MRI (fMRI) studies necessitates a technique that is able to monitor MRI signal in a real-time fashion and to interactively control certain experimental procedures. In the present study, an approach for real-time MRI on a Bruker scanner is presented. The custom software runs on the console computer in parallel with the scanner imaging software, and no additional hardware is required. The utility of this technique is demonstrated in manganese-enhanced MRI (MEMRI) with acute cocaine challenge, in which temporary disruption of the blood-brain barrier (BBB) is a critical step for MEMRI experiments. With the aid of real-time MRI, we were able to assess the outcome of BBB disruption following bolus injection of hyperosmolar mannitol in a near real-time fashion prior to drug administration, improving experimental success rate. It is also shown that this technique can be applied to monitor baseline physiological conditions in conventional fMRI experiments using blood oxygenation level-dependent (BOLD) contrast, further demonstrating the versatility of this technique.  相似文献   

7.
MRI measurements of water diffusion and blood perfusion are increasingly used for the evaluation of organ functionality and tissue viability (e.g., in tumors). While diffusion-weighted imaging is performed without contrast agents, measurement of blood perfusion is normally performed based on the administration of paramagnetic substances such as gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA). Simultaneous measurements of these two parameters are often preferred. However, it may be argued that Gd-DTPA causes constriction of small blood vessels or alters hemodynamic parameters such as blood viscosity, thereby corrupting subsequent measurements of the apparent diffusion constant (ADC). The objective of the current study was to investigate the possible changes in the ADC in tumors following intravenous administration of 0.2 and 0.4 mmol/kg of Gd-DTPA in mice. The study was conducted with C3H mouse mammary carcinomas inoculated in the right foot of the animal subjects. The results were compared with findings in a sham group, demonstrating that Gd-DTPA had no significant impact on the ADC as measured in a 7-T animal system.  相似文献   

8.
Blood–brain barrier (BBB) permeability estimation with dynamic contrast-enhanced MRI (DCE-MRI) has shown significant potential for predicting hemorrhagic transformation (HT) in patients presenting with acute ischemic stroke (AIS). In this work, the effects of scan duration on quantitative BBB permeability estimates (KPS) were investigated. Data from eight patients (three with HT) aged 37–93 years old were retrospectively studied by directly calculating the standard deviation of KPS as a function of scan time. The uncertainty in KPS was reduced only slightly for a scan time of 3 min and 30 s (4% reduction in P value from .047 to .045). When more than 3 min and 30 s of data were used, quantitative permeability MRI was able to separate those patients who proceeded to HT from those who did not (P value <.05). Our findings indicate that reducing permeability acquisition times is feasible in keeping with the need to maintain time-efficient MR protocols in the setting of AIS.  相似文献   

9.
Contrast-enhanced T1-weighted spin-echo magnetic resonance imaging (MRI) has demonstrated that Gd-diethylenetriaminepentaacetate (Gd-DTPA), which normally does not cross the blood-brain or blood-CSF barriers, does so approximately 40 min after administration of glucose to a vitamin B1 deficient rat. The period of the onset of this blood-CSF or blood-brain barrier dysfunction coincides with our previous observations of accumulation of glutamate or glutamate derivatives following an equivalent glucose load under identical conditions of thiamin deficiency, consistent with a relationship between these two observations. The dysfunction was reversed when a thiamin deficient animal was made thiamin replete.  相似文献   

10.
To provide contrast enhancement in magnetic resonance imaging, a new class of compounds has been developed, the paramagnetic metal ion chelates. Gadolinium (Gd) DTPA, a prototype of this class, shows a sufficiently high in vivo stability and low toxicity for use in initial clinical trials. This type of agent, designed for rapid clearance by glomerular filtration, allows the assessment on MRI of renal function, alterations in tissue perfusion, myocardial ischemia, and perhaps most significantly disruption of the blood-brain barrier (BBB). Research at Vanderbilt has demonstrated these applications, with particular emphasis in three areas. Tissue perfusion changes, such as those produced by ligation of the arterial blood supply to portions of the spleen and kidney, cannot easily be detected on unenhanced MRI. These acute tissue infarcts can be readily identified following the administration of Gd DTPA. The question of field strength dependence of Gd DTPA has been addressed by experimentation at 0.15, 0.5, and 1.5 tesla. Furthermore, the ability to detect an alteration of the BBB, when present without associated edema, has been demonstrated with the application of control enhancement. The use of contrast agents in MRI will enhance both the sensitivity and specificity of magnetic resonance imaging.  相似文献   

11.
The purpose of the study was to determine whether diffusion-weighted magnetic resonance imaging (DWI) could identify focal lesions that develop in ischemia-sensitive cerebral tissues during reperfusion following global brain ischemia. Localized 1H-Magnetic Resonance Spectroscopy (1H-MRS) measurements were also obtained to determine whether abnormal spectroscopic markers were associated with focal lesions and to define time correlations between DWI and metabolic changes. Brain diffusion-weighted magnetic resonance imaging measurements were made in a cat model of repetitive global cerebral ischemia and reperfusion. Five animals were exposed to three episodes of 10 min vascular occlusions at hourly intervals. Three animals were evaluated as controls. DWI, T2WI, and 1H-MRS data were acquired for up to 12 h. Transient focal DWI hyperintensity was detected in the hippocampus, basal ganglia, and cortical watershed areas. These focal abnormalities usually appeared during the final reperfusion and eventually spread to encompass all of the gray matter. Spectroscopic measurements demonstrated the expected elevation of the lactate signal intensity during vessel occlusion, which returned to normal during early reperfusion. A subsequent rise in the lactate signal occurred approximately 3–4 h after the beginning of the third reperfusion. This late lactate elevation occurred after focal hyperintensities were identified by DWI. No significant signal changes were seen in spectroscopic metabolites other than lactate. The study illustrates that DWI and 1H-MRS are sensitive to focal cerebral lesions that occur during reperfusion following global cerebral ischemia.  相似文献   

12.
Quantitative determination of in-vivo gadolinium diethylenetriamine-pentaacid (Gd-DTPA) concentration is attractive in various studies involving perfusion, tracer kinetics and permeability constants. Using a 1.5 T clinical system and a 7 T small-bore system, we evaluated a method for absolute determination of Gd-DTPA concentrations in plasma solutions. Different solutions of Gd-DTPA and (99m)Tc-DTPA were mixed in human plasma and concentrations in the range of 0-5.0 mmol/l (1.5 T system) or 0-3.0 mmol/l (7 T system) of Gd-DTPA were divided into thirteen tubes. All MRI measurements were carried out using conventional sequences (SE, FLASH and GRASS). The MR measured intensity was converted to Gd-DTPA concentration by mathematical interpretation of the sequences. All MRI sequences showed, that the measured concentrations of Gd-DTPA revealed a slight non-linear difference compared with the calculated Gd-DTPA concentrations determined by the plasma (99m)Tc-DTPA using gamma counting. This non-linearity was most pronounced at high Gd-DTPA concentrations, suggesting that the discrepancy could be a result of an increased plasma relaxivity at higher concentrations. Adjustment of measured Gd-DTPA concentration was therefore performed using a selected power function, A[Gd-DTPA](a), which yielded the best linear relationship. Regression analysis showed that the scaling constant (A) varied from 0.11 to 97.45 and the power constant (a) varied from 0.83 to 1.6. Based on these constants, the MRI measured concentrations of Gd-DTPA did not differ from the calculated concentrations of Gd-DTPA obtained from reference measurements of (99m)Tc-DTPA. In the 1.5 T system, a linear relationship (r(2) > or = 0.95) was demonstrated in the range of 0-5.0 mmol/l Gd-DTPA, and in the 7 T system, a linear relationship (r(2) > or = 0.92) was demonstrated in the range of 0-3.0 mmol/l Gd-DTPA. Additionally, the effect of signal-to-noise on measured concentrations of Gd-DTPA was simulated using MR data of the mixed solutions of Gd-DTPA in plasma and the analytical expression of the pulse sequences. The simulations showed that the concentrations were most sensitive to noise in the GRASS sequence. In conclusion, this study demonstrates a novel approach to quantify accurately the Gd-DTPA concentration directly from MRI signal data using different routine sequences.  相似文献   

13.
This paper describes a study performed to evaluate the feasibility of using a 1.5-T whole-body magnetic resonance imaging (MRI) equipment, in combination with pharmacokinetic modeling, to obtain in vivo information about the morphology and perfusion of tarantulas (Eurypelma californicum). MRI was performed on three tarantulas using spin-echo sequences for morphological imaging and a rapid spoiled gradient-echo sequence for dynamic imaging during and after contrast medium (CM; Gd-DTPA) injection. Signal enhancement in dynamic measurements was evaluated with a pharmacokinetic two-compartment model. Spin-echo images showed morphological structures well. Dynamic images were of sufficient quality and allowed a model analysis of CM kinetics, which provides information about regional perfusion. In conclusion, morphological and dynamic contrast-enhanced MRI of tarantulas is feasible with a conventional clinical scanner. Studies of this kind are therefore possible without a dedicated high-field animal scanner.  相似文献   

14.
The neurotoxicity of intravenously injected Gadolinium (Gd) complexes to rats with disrupted blood-brain barrier (BBB) was evaluated. After disruption of the BBB by infusion of mannitol solution, one of several contrast agents tested was injected intravenously at a dose of 1 or 3 mmol Gd/kg, and neurological symptoms were graded. The concentrations of Gd in brain and plasma were also measured. Injection of Gd-DTPA at a dose of 3 mmol Gd/kg did not change behavior. On the other hand, Gd-DTPA-BMA, Gd-DO3A-butrol, and Gd-DO3A-HP each induced behavioral impairments, and some animals died within 1 h after injection. Gd-DO3A-HP showed lethal effect even at a dose of 1 mmol/kg. The concentration of Gd in the brain of the animals injected with Gd-DO3A-HP at 3 mmol Gd/kg was essentially the same as that of animals injected with Gd-DTPA at the same dose. The neurotoxicity of the contrast agents tested was graded as follows: Gd-DTPA ≤ Gd-DTPA-BMA = Gd-DO3A-butrol < Gd-DO3A-HP.  相似文献   

15.
为评价维拉帕米(Ver)防治心脏缺血-再灌注损伤的作用,采用31P核磁共振(3lP NMR)技术对大鼠心肌缺血前,缺血过程中及缺血后高能磷化物的含量及细胞内pH (pHi)的变化过程进行了动态跟踪测定,离体心脏于37℃下平衡灌流30min,停止灌流30min,再灌注30min.灌流液中始终含有Ver (0.2μmol·L-1).Ver可使再灌注后心脏的冠脉流量有较高程度的恢复,3lP NMR测定显示Ver可使心脏产生代谢上的改善作用.缺血10min后对照组心脏即检测不到磷酸肌酸(PCr),而Ver组心脏PCr仍保持在缺血前的20%.缺血过程中治疗组比未治疗组心脏ATP下降减缓,至缺血结束时心肌ATP分别为缺血前的53%和34%.再灌注后两组心肌的ATP均未回升,但Ver使PCr的恢复显著提高(P<0.05),给药心脏PCr/Pi(无机磷酸盐)无论在缺血前或再灌注阶段,都非常显著(P<0.01)地高于对照组心脏.Ver还可显著减轻缺血过程中的酸中毒并防止再灌注后心肌出现严重酸化的区域.  相似文献   

16.
Histology, including immunohistochemistry, and magnetic resonance imaging microscopy (microMRI) are complementary techniques for the analysis of brain structure. Therefore, microMRI analysis, often of formalin-fixed tissue, precedes histologic evaluation of the same experimental animal in many studies. However, the application of gadopentetate dimeglumine (Gd-DTPA), while of value for MRI studies, has an unknown effect on subsequent histology. We demonstrate here that for the mouse brain, histology with Nissl staining and immunostaining for microtubule-associated protein 2, using standard techniques for tissue preparation, are unaffected by prior perfusion of the tissue with Gd-DTPA. This conclusion was based on qualitative morphologic comparisons of stained sections, as well as quantification of mean immunofluorescence pixel intensities from Gd-treated (mean+/-S.D.=131.2+/-28.4; n=3) as compared to nontreated specimens (116.2+/-34.7; n=3, P=.7). Therefore, Gd-DTPA may be applied as a microMRI contrast agent in formalin-fixed brain tissue prior to histologic studies.  相似文献   

17.
ABSTRACT: BACKGROUND: Successful delivery of compounds to the brain and retina is a challenge in the development of therapeutic drugs and imaging agents. This challenge arises because internalization of compounds into the brain and retina is restricted by the blood--brain barrier (BBB) and blood-retinal barrier (BRB), respectively. Simple and reliable in vivo assays are necessary to identify compounds that can easily cross the BBB and BRB. METHODS: We developed six fluorescent indoline derivatives (IDs) and examined their ability to cross the BBB and BRB in zebrafish by in vivo fluorescence imaging. These fluorescent IDs were administered to live zebrafish by immersing the zebrafish larvae at 7--8 days post fertilization in medium containing the ID, or by intracardiac injection. We also examined the effect of multidrug resistance proteins (MRPs) on the permeability of the BBB and BRB to the ID using MK571, a selective inhibitor of MRPs. RESULTS: The permeability of these barriers to fluorescent IDs administered by simple immersion was comparable to when administered by intracardiac injection. Thus, this finding supports the validity of drug administration by simple immersion for the assessment of BBB and BRB permeability to fluorescent IDs. Using this zebrafish model, we demonstrated that the length of the methylene chain in these fluorescent IDs significantly affected their ability to cross the BBB and BRB via MRPs. CONCLUSIONS: We demonstrated that in vivo assessment of the permeability of the BBB and BRB to fluorescent IDs could be simply and reliably performed using zebrafish. The structure of fluorescent IDs can be flexibly modified and, thus, the permeability of the BBB and BRB to a large number of IDs can be assessed using this zebrafish-based assay. The large amount of data acquired might be useful for in silico analysis to elucidate the precise mechanisms underlying the interactions between chemical structure and the efflux transporters at the BBB and BRB. In turn, understanding these mechanisms may lead to the efficient design of compounds targeting the brain and retina.  相似文献   

18.
INTRODUCTION: Blood-brain barrier (BBB) plays an important role in the pathophysiology of many central nervous system disorders. In the past, a number of laboratory techniques have been proposed to quantify permeability coefficient, k(i), an important index of barrier function. Recently, MRI has been used to estimate k(i) based on the unidirectional tracer kinetics model in one compartment as proposed by Patlak et al. and has been found to be in good agreement with the gold standard quantitative autoradiography technique. Rapid data acquisition, a prerequisite of this MRI-based technique, causes a compromise in spatial resolution resulting in partial volume (PV) averaging, an effect that is seldom explicitly compensated for in quantitative neuroimaging studies. This may have profound effect on the reliability of estimates obtained using quantitative methods. Existing PV compensation techniques that use complex statistical algorithms perform corrections on stationary images. In this proof-of-principle study, the effect of PV averaging on BBB permeability coefficient has been evaluated using a simulation model, and a postprocessing technique that makes use of dynamic information has been proposed for PV compensation in order to improve the reliability of this quantitative method. MATERIALS AND METHODS: A computer simulation model is presented, which evaluates the effect of PV averaging on permeability coefficient estimates. Beginning with a known k(i), a PV compensation technique is proposed, which aims at correcting calculated k(i) to obtain the original estimate. The application of the PV compensation technique is demonstrated in a rat stroke brain model. Magnetic resonance imaging experiments were performed in Wistar rats (n=2) on a 4.7-T scanner. After acquiring localizer, T2-weighted and diffusion-weighted images, a rapid T1 mapping protocol was implemented to acquire one pre-gadolinium-diethylenetriaminepentaacetic acid baseline data set followed by a series of postinjection data sets. The data were postprocessed without and with application of PV compensation technique to obtain a k(i) estimate. RESULTS AND DISCUSSION: The issue of PV averaging as a result of limited spatial resolution is often not addressed in quantitative MRI studies. In this work, simulation experiments have provided useful insight into the PV effects on permeability coefficient estimate. The findings of the simulation experiments agree well with the results obtained from MR experiments. Results from the MR experiments suggest that it may be important to perform PV compensation in order to improve the reliability of permeability coefficient estimates. Future work involves classification of tissue component into gray and white matter and CSF to improve the accuracy of the compensation technique and to investigate repeatability of the technique in a larger group of animals.  相似文献   

19.
Magnetic resonance imaging (MRI) can now provide maps of human brain function with high spatial and temporal resolution. This noninvasive technique can also map the coritical activation that occurs during focal seizures, as demonstrated here by the results obtained using a conventional 1.5 T clinical MRI system for the investigation of a 4-year-old boy suffering from frequent partial motor seizures of his right side. FLASH images (TE = 60 ms) were acquired every 10 s over a period of 25 min, and activation images derived by subtracting baseline images from images obtained during clinical seizures. Functional MRI revealed sequential activation associated with specific gyri within the left hemisphere with each of five consecutive clinical seizures, and also during a period that was not associated with a detectable clinical seizure. The activated regions included gyri that were structurally abnormal. These results demonstrate (a) that functional MRI can potentially provide new insights into the dynamic events that occur in the epileptic brain and their relationship to brain structure; and (b) that there is the possibility of obtaining similar information in the absence of clinical seizures, suggesting the potential for studies in patients with interictal electrical disturbances.  相似文献   

20.

Background  

The effect of neurotrophic factors in enhancing stroke-induced neurogenesis in the adult subventricular zone (SVZ) is limited by their poor blood-brain barrier (BBB) permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号