首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Photoinduced charge separation and recombination in a carotenoid-porphyrin-fullerene triad C-P-C(60)(1) have been followed by multifrequency time-resolved electron paramagnetic resonance (TREPR) at intermediate magnetic field and microwave frequency (X-band) and high field and frequency (W-band). The electron-transfer process has been characterized in the different phases of two uniaxial liquid crystals (E-7 and ZLI-1167). The triad undergoes photoinduced electron transfer, with the generation of a long-lived charge-separated state, and charge recombination to the triplet state, localized in the carotene moiety, mimicking different aspects of the photosynthetic electron-transfer process. Both the photoinduced spin-correlated radical pair and the spin-polarized recombination triplet are observed starting from the crystalline up to the isotropic phase of the liquid crystals. The W-band TREPR radical pair spectrum has allowed unambiguous assignment of the spin-correlated radical pair spectrum to the charge-separated state C(.+)-P-C(60)(.-). The magnetic interaction parameters have been evaluated by simulation of the spin-polarized radical pair spectrum and the spin-selective recombination rates have been derived from the time dependence of the spectrum. The weak exchange interaction parameter (J = +0.5 +/- 0.2 G) provides a direct measure of the dominant electronic coupling matrix element V between the C(.+)-P-C(60)(.-) radical pair state and the recombination triplet state (3)C-P-C(60). The kinetic parameters have been analyzed in terms of the effect of the liquid crystal medium on the electron-transfer process. Effects of orientation of the molecular triad in the liquid crystal are evidenced by simulations of the carotenoid triplet state EPR spectra at different orientations of the external magnetic field with respect to the director of the mesophase. The order parameter (S = 0.5 +/- 0.05) has been evaluated.  相似文献   

2.
曾和平 《有机化学》2003,23(5):447-451
富勒烯(C60/C70)与N,N,N’,N’-四-(对甲苯基)-4,4’-二胺-1,1’-二 苯硒醚(TPDASe)间在激光光诱导条件下,发生了分子间的电子转移过程.在可见- 近红外区(600-1200nm),观测到了TPDASe阳离子自由基、富勒烯(C60/C70)激发三 线态和阴离子自由基,在苯腈溶液中,观测瞬态谱测定了电子从TPDASe转移到富勒 烯(C60/C70)激发三线态的量子转化产率(Φet^T)和电子转移常数(Ket).  相似文献   

3.
Fullerenes C60 and C70 have high electron affinity ( 2.6 - 2.8 ev ) and readily form anions on electronchemical reduction1, which were famous as electron acceptor in photo-excitation because of symmetrical shape, large size, and properties of its p - electron system2. After observation of molecular ferromagnetism3 in the tetrakis (dimethylamino ) ethylene salt of C60 as well as the occurrence of ultra-fast photoinduced electron transfer within the dimethyl aniline - C60 complex4, prompted us…  相似文献   

4.
Photoinduced electron transfer processes between fullerenes (C60 / C70) and N, N, N′, N′- tetra - ( p-methylphenyl ) - 4, 4′- diamino - 1, 1′- diphenyl ether ( TPDAE ) have been studied by nanosecond laser flash photolysis. Quantum yields and rate constants of electron transfer from TPDAE to excited triplet state of fullerenes (C60 / C70 ) in benzonitrile have been evaluated by observing the transient absorption bands in the near-IR region where the excited triplet state, radical anion of fullerenes ( C60 / C70 ) and radical cations of TPDAE appear.  相似文献   

5.
Photoinduced electron-transfer processes in the systems of chlorophylls (Chl) (chlorophyll-a [Chl-a] and chlorophyll-b) and fullerenes (C60/C70) in both polar and non-polar solvents have been investigated with nanosecond laser photolysis technique, observing the transient spectra in the visible/near-IR regions. By the excitation of Chl in benzonitrile (BN) it has been proved that electron transfer takes place from the triplet excited states of Chl to the ground states of C60/C70. By the excitation of C70 in BN electron transfer takes place from the ground states of Chl to the triplet excited state of C70. In both Chl the rate constants and quantum yields for the electron-transfer processes are as high as those of zinc porphyrins and zinc phthalocyanines, indicating that the long alkyl chains of Chl play no role in retarding the electron transfer. The rate constant for the electron-mediating process from the radical anion of C70 to octylviologen dication yielding the octylviologen radical cation was evaluated. The back electron-transfer process from the viologen radical cation to the radical cation of Chl-a takes place in a longer time-scale, indicating that a photosensitized electron-transfer/electron-mediating cycle is achieved.  相似文献   

6.
Photoinduced electron-transfer processes between fullerene (C60) and 1,8-bis(dimethylamino)naphthalene, which is called a proton-sponge (PS), have been investigated by means of laser flash photolysis in the presence and absence of CF3CO2H. For a mixture of C60 and PS, the transient absorption spectra showed the rise of the C60 radical anion with concomitant decay of the C60 triplet (3C60), suggesting that photoinduced intermolecular electron transfer occurs via 3C60 in high efficiency in polar solvent. For a covalently bonded C60-PS dyad, photoinduced intramolecular charge-separation process takes place via the excited singlet state of the C60 moiety, although charge recombination occurs within 10 ns. For both systems, electron-transfer rates were largely decelerated by addition of a small amount of CF3CO2H, leaving the long-lived 3C60. These observations indicate that the energy levels for charge-separated states of the protonated PS and C60 become higher than the energy level of the 3C60 moiety, showing low donor ability of the protonated PS. Thus, intermolecular electron-transfer process via 3C60 for C60-PS mixture and intramolecular charge-separation process via 1C60-PS for C60-PS dyad were successfully controlled by the combination of the light irradiation with a small amount of acid.  相似文献   

7.
In the presence of scandium triflate, an efficient photoinduced electron transfer from the triplet excited state of C(60) to p-chloranil occurs to produce C(60) radical cation which has a diagnostic NIR (near-infrared) absorption band at 980 nm, whereas no photoinduced electron transfer occurs from the triplet excited state of C(60) (3C(60)) to p-chloranil in the absence of scandium ion in benzonitrile. The electron-transfer rate obeys pseudo-first-order kinetics and the pseudo-first-order rate constant increases linearly with increasing p-chloranil concentration. The observed second-order rate constant of electron transfer (k(et)) increases linearly with increasing scandium ion concentration. In contrast to the case of the C(60)/p-chloranil/Sc(3+) system, the k(et) value for electron transfer from 3C(60) to p-benzoquinone increases with an increase in Sc(3+) concentration ([Sc(3+)]) to exhibit a first-order dependence on [Sc(3+)], changing to a second-order dependence at the high concentrations. Such a mixture of first-order and second-order dependence on [Sc(3+)] is also observed for a Sc(3+)-promoted electron transfer from CoTPP (TPP(2-) = tetraphenylporphyrin dianion) to p-benzoquinone. This is ascribed to formation of 1:1 and 1:2 complexes between the generated semiquinone radical anion and Sc(3+) at the low and high concentrations of Sc(3+), respectively. The transient absorption spectra of the radical cations of various fullerene derivatives were detected by laser flash photolysis of the fullerene/p-chloranil/Sc(3+) systems. The ESR spectra of the fullerene radical cations were also detected in frozen PhCN at 193 K under photoirradiation of the fullerene/p-chloranil/Sc(3+) systems. The Sc(3+)-promoted electron-transfer rate constants were determined for photoinduced electron transfer from the triplet excited states of C(60), C(70), and their derivatives to p-chloranil and the values are compared with the HOMO (highest occupied molecular orbital) levels of the fullerenes and their derivatives.  相似文献   

8.
Photoinduced intermolecular electron transfer process of fullerene (C60) with 9,9-bis(4-triphenylamino)fluorene (BTAF) and 9,9-dimethoxyethyl-2-diphenylaminofluorene (DAF) in toluene and benzonitrile has been investigated by nanosecond laser photolysis technique in the visible/near-IR regions. By the selective excitation of C60 using 532 laser light, it has been proved that the electron transfer takes place from the ground states BTAF and DAF to the triplet excited state of C60 ((3)C60*) by observing the radical anion of C60 and radical cation of BTAF and DAF. It was observed that the electron transfer of BTAF/(3)C60* is more efficient than DAF/(3)C60* reflecting the effect of amine-substitutents of the fluorene moiety on the efficiency of the electron transfer process. On addition of a viologen dication (OV(2+)), the electron of the anion radical of C60 mediates to OV(2+) yielding the OV(+). These results proved that the photosensitized electron-transfer/electron-mediating processes have been confirmed by the transient absorption spectral method.  相似文献   

9.
Three octahedral complexes containing a (cis-cyclam)iron(III) moiety and an O,N-coordinated o-iminobenzosemiquinonate pi radical anion have been synthesized and characterized by X-ray crystallography at 100 K: [Fe(cis-cyclam)(L(1-3)(ISQ))](PF(6))(2) (1-3), where (L(1-3)(ISQ)) represents the monoanionic pi radicals derived from one-electron oxidations of the respective dianion of o-imidophenolate(2-), L(1), 2-imido-4,6-di-tert-butylphenolate(2-), L(2), and N-phenyl-2-imido-4,6-di-tert-butylphenolate(2-), L(3). Compounds 1-3 possess an S(t) = 0 ground state, which is attained via strong intramolecular antiferromagnetic exchange coupling between a low-spin central ferric ion (S(Fe) = 1/2) and an o-imino-benzosemiquinonate(1-) pi radical (S(rad) = 1/2). Zero-field M?ssbauer spectra of 1-3 at 80 K confirm the low-spin ferric electron configuration: isomer shift delta = 0.26 mm s(-1) and quadrupole splitting DeltaE(Q) = 1.96 mm s(-1) for 1, 0.28 and 1.93 for 2, and 0.33 and 1.88 for 3. All three complexes undergo a reversible, one-electron reduction of the coordinated o-imino-benzosemiquinonate ligand, yielding an [Fe(III)(cis-cyclam)(L(1-3)(IP))](+) monocation. The monocations of 1 and 2 display very similar rhombic signals in the X-band EPR spectra (g = 2.15, 2.12, and 1.97), indicative of low-spin ferric species. In contast, the monocation of 3 contains a high-spin ferric center (S(Fe) = 5/2) as is deduced from its M?ssbauer and EPR spectra.  相似文献   

10.
The photoinduced electron transfer reactions of the triplet state of rose bengal (RB) and several electron donors were investigated by the complementary techniques of steady state and time-resolved electron paramagnetic resonance (EPR) and laser flash photolysis (LFP). The yield of radicals varied with the light fluence rate, RB concentration and, in particular, the electron donor used. Thus for L-dopa (dopa, dihydroxyphenylalanine) only 10% of RB anion radical (RB√−) was produced, with double the yield observed with NADH (NAD, nicotinamide adenine dinucleotide) as quencher and more than three times the yield observed with ascorbate as quencher. Quenching of the RB triplet was both reactive and physical with total quenching rate constants of 4 × 108 mol−1 dm3 s−1 and 8.5 × 108 mol−1 dm3 s−1 for ascorbate and NADH respectively. The rate constant for the photoinduced electron transfer from ascorbate to RB triplet was 1.4 × 108 mol−1 dm3 s−1 as determined by Fourier transform EPR (FT EPR). FT EPR spectra were spin polarized in emission at early times indicating a radical pair mechanism for the chemically induced dynamic electron polarization. Subsequent to the initial electron transfer production of radicals, a complex series of reactions was observed, which were dominated by processes such as recombination, disproportionation and secondary (bleaching) reactions.

It was observed that back electron transfer reactions could be prevented by mild oxidants such as ferric compounds and duroquinone, which were efficiently reduced by RB√−.  相似文献   


11.
The photooxidation of a series of aldoxime ethers was studied by laser flash photolysis and steady-state (product studies) methods. Nanosecond laser flash photolysis studies have shown that chloranil (CA)-sensitized reactions of the O-methyl (1), O-ethyl (2), O-benzyl (3), and O-tert-butyl (4) benzaldehyde oximes result in the formation of the corresponding radical cations. In polar non-nucleophilic solvents such as acetonitrile, there are several follow-up pathways available depending on the structure of the aldoxime ether and the energetics of the reaction pathway. When the free energy of electron transfer (DeltaGET) becomes endothermic, syn-anti isomerization is the dominant pathway. This isomerization pathway is a result of triplet energy transfer from CA to the aldoxime ether. For substrates with alpha-protons (aldoxime ethers 1-3), the follow-up reactions involve deprotonation at the alpha-position followed by beta-scission to form the benziminyl radical (and an aldehyde). The benziminyl radical reacts to give benzaldehyde, the major product under these conditions. A small amount of benzonitrile is also observed. In the absence of alpha-hydrogens (aldoxime ether 4), the major product is benzonitrile, which is thought to occur via reaction of the excited (triplet) sensitizer with the aldoxime ether. Abstraction of the iminyl hydrogen yields an imidoyl radical, which undergoes a beta-scission to yield benzonitrile. An alternative pathway involving electron transfer followed by removal of the iminyl proton was not deemed viable based on charge densities obtained from DFT (B3LYP/6-31G*) calculations. Similarly, a rearrangement pathway involving an intramolecular hydrogen atom transfer process was ruled out through experiments with a deuterium-labeled benzaldehyde oxime ether. Studies involving nucleophilic solvents have shown that all aldoxime ethers reacted with MeOH by clean second-order kinetics with rate constants of 0.7 to 1.2 x 10(7) M(-1) s(-1), which suggests that there is only a small steric effect in these reactions. The steady-state experiments demonstrated that under these conditions no nitrile is formed. This is explained by a mechanistic scheme involving nucleophilic attack on the nitrogen of the aldoxime ether radical cation, followed by solvent-assisted [1,3]-proton transfer and elimination of an alcohol, similar to the results obtained for a series of acetophenone oxime ethers.  相似文献   

12.
Photoinduced reactions of chloranil (CA) with 1,1-diarylethenes 1 [(p-X-Ph)(2)C=CH(2), X = F, Cl, H, Me] in benzene afforded products 4-14, respectively, with the bicyclo[4.2.0]oct-3-ene-2,5-diones 4, the 6-diarylethenylcyclohexa-2,5-diene-1,4-diones 5, and 2,3,5, 6-tetrachlorohydroquinone 13 as the major primary products. The cyclobutane products 4 are formed via a triplet diradical intermediate without involvement of single electron transfer (SET) between the two reactants, while 5 is derived from a reaction sequence with initial SET interaction between (3)CA and the alkene. The 9-arylphenanthrene-1,4-diones 6 and its 10-hydroxy-derivatives 7 are secondary photochemical products derived from 5. The isomeric cage products 9-11 are formed from 4 via intramolecular benzene-alkene [2 + 2] (ortho-)photocycloadditions induced by the triplet excited enedione moiety. The relative amount of the two groups of products (4 and its secondary products 9-11 via non-SET route vs 5 and its secondary products 6, 7, 8, 12, and 14 via SET route) shows a rather regular change, with the ratio of non-SET route products gradually increasing with the increase in oxidation potential of the alkenes and in the positive free energy change for electron transfer (DeltaG(ET)) between (3)CA and the alkene, at the expense of the ratio of the products from the SET route. The competition between the SET and non-SET routes was also found to be drastically influenced by solvent polarity, with the SET pathways more favored in polar solvent. Photo-CIDNP investigations suggest the intermediacy of exciplexes or contact ion radical pairs in these reactions in benzene, while in acetonitrile, SET process led to the formation of CA(*)(-) and cation radical of the alkene in the form of solvent separated ion radical pairs and free ions.  相似文献   

13.
The quenching processes of the exited triplet state of fullerene (3C60) by ferrocene (Fc) derivatives have been observed by the transient absorption spectroscopy and thermal lens methods. Although 3C60 was efficiently quenched by Fc in the rate close to the diffusion controlled limit, the quantum yields (phi(et)) for the generation of the radical anion of C60 (C60*-) via 3C60 were quite low even in polar solvents; nevertheless, the free-energy changes (deltaG(et)) of electron transfer from Fc to 3C60 are sufficiently negative. In benzonitrile (BN), the phi(et) value for unsubstitued Fc was less than 0.1. The thermal lens method indicates that energy transfer from 3C60 to Fc takes place efficiently, suggesting that the excited triplet energy level of Fc was lower than that of 3C60. Therefore, energy transfer from 3C60 to ferrocene decreases the electron-transfer process from ferrocene to 3C60. To increase the participation of electron transfer, introduction of electron-donor substituents to Fc (phi(et) = 0.46 for decamethylferrocene in BN) and an increase in solvent polarity (phi(et) = 0.58 in BN:DMF (1:2) for decamethylferrocene) were effective.  相似文献   

14.
EPR spectra of the excited quartet and doublet molecular states of (tetraphenylporphinato)zinc(II) covalently bounded to 3-(N-nitronyl-notroxide) pyridine stable radical are modeled in terms of the spin-Hamiltonian given by the sum of the contributions from the radical and triplet moieties, and the interaction between them. The later is represented by anisotropic point dipolar and isotropic exchange electron spin-spin interactions. It is shown that the high field (W-band) EPR spectra depend on energy separation between the electronic doublet (D) and quartet (Q) states. This dependence was utilized to estimate the upper limit of the intensity of exchange interaction between the radical and porphyrin moieties.  相似文献   

15.
The results of an investigation of the thermoluminescence (TL) and electroluminescence (EL) of arylated methylenecyclopropanes 1, systems whose photoinduced electron-transfer (PET) chemistry has been thoroughly studied, are described. In both the TL and EL experiments with 1, electronically excited triplet trimethylenemethane (TMM) biradicals (3)2** are generated by back electron transfer (charge recombination) of a TMM radical cation (hole) 2*+, formed by isomerization of the substrate radical cation (hole, 1*+). The application of this chemistry to the design of new organic light-emitting diodes (OLEDs) is described. The mechanistic features of this reaction system have the potential of overcoming significant problems (e.g., quantum efficiency, difficulty obtaining long wavelength emission, and device durability) normally associated with OLEDs that rely on the use of organic closed-shell hydrocarbons.  相似文献   

16.
The aqueous photochemistry of the sodium salt of 1-(N,N-diethylamino)-diazen-1-ium-1,2-diolate (3) has been investigated by both experimental and computational methods. Photolysis results in the formation of the N-nitrosodiethylamine radical anion (5) and nitric oxide (NO) via a triplet excited state. The nitrosamine radical anion either undergoes electron transfer with NO before cage escape to form triplet NO(-) and nitrosamine (minor process) or rapidly dissociates to form an additional molecule of NO and ultimately amine (major process). The production of nitrosamine radical anion 5 upon photolysis of diazeniumdiolate 3 is confirmed by low-temperature EPR spectroscopy. The calculated energetics for the ground and excited states of the parent diazeniumdiolate ion at the CIS and B3LYP levels of theory as well as B3LYP calculations on the fragmentation processes were very effective in rationalizing the observed photodissociation processes.  相似文献   

17.
A series of ionic multicomponent complexes comprising C60 and C70 anions and coordinating assemblies of methyldiazabicyclooctane cations with metal tetraphenylporphyrins, (MDABCO+)2.MIITPP.(C60(70)-)2.Sol. (C60, M = Zn (1); C60, M = Co (2); C60, M = Mn (3); C60, M = Fe (4); C70, M = Mn (5); and C70, M = Fe (6)) has been obtained. IR- and UV-vis-NIR spectra of 1-6 justified the formation of C60*- in 1-4 and single-bonded (C70-)2 dimers in 5 and 6. Co and Mn atoms are six-coordinated in the (MDABCO+)2.MIITPP units with relatively long M-N bonds of 2.475(2), 2.553(2), and 2.511(3) A for 2, 3, and 5, respectively. Isostructural complexes 2 and 3 contain C60*- zigzag chains separated by the (MDABCO+)2.MIITPP units, whereas in 5 the layers formed by the (C70-)2 dimers alternate with those composed of the (MDABCO+)2.MnIITPP units and noncoordinating MDABCO+ cations. Negative Weiss constants of -13 (1), -2 (3), and -2 (4) K indicate the antiferromagnetic interaction of spins, which decreases the magnetic moment of the complexes below 70-120 K. The EPR signals of 1 and 4 attributed to C60*- are split into two components at the same temperatures, which broaden and shift to higher and lower magnetic fields with the temperature decrease. Complexes 2 and 3 show single EPR signals with g-factors equal to 2.1082 and approximately 2.4 at 293 K, respectively. These values are mean between those characteristic of MIITPP and C60*-, and, consequently, the signals appear due to exchange coupling between these paramagnetic species. The antiferromagnetic ordering of C60*- spins below 70-100 K shifts g-factor values closer to those characteristic of individual MIITPP (g = 2.1907 (2) and approximately 4.9 (3) at 4 K). In contrast to 1-4, complex 5 shows paramagnetic behavior with Weiss constant close to 0.  相似文献   

18.
EPR spectra of the excited quartet and doublet molecular states of (tetraphenylporphinato)zinc(II)covalently bounded to 3-(N-nitronyl-notroxide) pyridine stable radical are modeled in terms of the spin-Hamiltonian given by the sum of the contributions from the radical and triplet moieties, and the interaction between them. The later is represented by anisotropic point dipolar and isotropic exchange electron spin–spin interactions. It is shown that the high field (W-band) EPR spectra depend on energy separation between the electronic doublet (D) and quartet (Q) states. This dependence was utilized to estimate the upper limit of the intensity of exchange interaction between the radical and porphyrin moieties.  相似文献   

19.
The photophysics of two symmetric triads, (ZnP)2PBI and (H2P)2PBI, made of two zinc or free-base porphyrins covalently attached to a central perylene bisimide unit has been investigated in dichloromethane and in toluene. The solvent has been shown to affect not only quantitatively but also qualitatively the photophysical behavior. A variety of intercomponent processes (singlet energy transfer, triplet energy transfer, photoinduced charge separation, and recombination) have been time-resolved using a combination of emission spectroscopy and femtosecond and nanosecond time-resolved absorption techniques yielding a very detailed picture of the photophysics of these systems. The singlet excited state of the lowest energy chromophore (perylene bisimide in the case of (ZnP)2PBI, porphyrin in the case of (H2P)2PBI) is always quantitatively populated, besides by direct light absorption, by ultrafast singlet energy transfer (few picosecond time constant) from the higher energy chromophore. In dichloromethane, the lowest excited singlet state is efficiently quenched by electron transfer leading to a charge-separated state where the porphyrin is oxidized and the perylene bisimide is reduced. The systems then go back to the ground state by charge recombination. The four charge separation and recombination processes observed for (ZnP)2PBI and (H2P)2PBI in dichloromethane take place in the sub-nanosecond time scale. They obey standard free-energy correlations with charge separation lying in the normal regime and charge recombination in the Marcus inverted region. In less polar solvents, such as toluene, the energy of the charge-separated states is substantially lifted leading to sharp changes in photophysical mechanism. With (ZnP)2PBI, the electron-transfer quenching is still fast, but charge recombination takes place now in the nanosecond time scale and to triplet state products rather than to the ground state. Triplet-triplet energy transfer from the porphyrin to the perylene bisimide is also involved in the subsequent deactivation of the triplet manifold to the ground state. With (H2P)2PBI, on the other hand, the driving force for charge separation is too small for electron-transfer quenching, and the deactivation of the porphyrin excited singlet takes place via intersystem crossing to the triplet followed by triplet energy transfer to the perylene bisimide and final decay to the ground state.  相似文献   

20.
Fourier transform EPR spectroscopy was employed in studying the electron transfer (ET) reaction and the quenching mechanisms of the photoexcited triplet state of C60 as electron acceptor and N,N,N′,N′-tetramethylbenzidine (NTMB) as electron donor in benzonitrile solution. The ET reaction product, the cation radical NTMB*+, interacts with 3*C60, leading to photoinduced electron polarization of NTMB*+ via triplet-doublet mixing mechanism combined with triplet mechanism. The quenching of 3*C60 and the polarization behavior of NTMB*+ are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号