首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
Biodegradable and biocompatible amphoteric poly(amido-amine) (PAA)-based hydrogels, containing carboxyl groups along with amino groups in their repeating unit, were considered as scaffolds for tissue engineering applications. These hydrogels were obtained by co-polymerising 2,2-bisacrylamidoacetic acid with 2-methylpiperazine with or without the addition of different mono-acrylamides as modifiers, and in the presence of primary bis-amines as crosslinking agents. Hybrid PAA/albumin hydrogels were also prepared. The polymerisation reaction was a Michael-type polyaddition carried out in aqueous media. The PAA hydrogels were soft and swellable materials. Cytotoxicity tests were carried out by the direct contact method with fibroblast cell lines on the hydrogels both in their native state (that is, as free bases) and as salts with acids of different strength, namely hydrochloric, sulfuric, acetic and lactic acid. This was done in order to ascertain whether counterion-specific differences in cytotoxicity existed. It was found that all the amphoteric PAA hydrogels considered were cytobiocompatible both as free bases and salts. Selected hydrogels samples underwent degradation tests under controlled conditions simulating biological environments, i.e. Dulbecco medium at pH 7.4 and 37 degrees C. All samples degraded completely and dissolved within 10 d, with the exception of hybrid PAA/albumin hydrogels that did not dissolve even after eight months. The degradation products of all samples turned to be non-cytotoxic. All these results led us to conclude that PAA-based hydrogels have a definite potential as degradable matrices for biomedical applications.  相似文献   

2.
Biodegradable poly(trimethylene carbonate) (PTMC) networks were prepared by photopolymerization of linear (L)‐ and star (S)‐shaped PTMC macromonomers for potential tissue engineering scaffold applications. The L‐ (Mn, 6400) and S‐shaped (Mn, 5880) PTMC macromonomers were synthesized using 1,4‐butane diol and 2‐ethyl‐ 2‐hydroxyl‐propane‐1,3‐diol co‐initiated ring‐opening polymerization of trimethylene carbonate (TMC) in the presence of stannous octoate and subsequent acrylation with acryloyl chloride. Chemical structures of the PTMC macromonomers and their corresponding networks were characterized by 1H NMR and 13C NMR spectroscopy. The human endothelial cell line, EA.hy926 was used to test the biocompatibility, cell adhesion, and proliferation behavior of both PTMC networks. The PTMC networks made from the S‐shaped macromonomers exhibited superior cell adhesion and proliferation behavior than those made of the linear macromonomers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Hydrogels have been used for many applications in tissue engineering and regenerative medicine due to their versatile material properties and similarities to the native extracellular matrix. Poly (ethylene glycol) diacrylate (PEGDA) is an ionic electroactive polymer (EAP), a material that responds to an electric field with a change in size or shape while in an ionic solution, that may be used in the development of hydrogels. In this study, we have investigated a positively charged EAP that can bend without the need of external ions. PEGDA was modified with the positively charged molecule 2‐(methacryloyloxy)ethyl‐trimethylammonium chloride (MAETAC) to provide its own positive ions. This hydrogel was then characterized and optimized for bending and cellular biocompatibility with C2C12 mouse myoblast cells. Studies show that the polymer responds to an electric field and supports C2C12 viability.  相似文献   

4.
A novel nanocomposite involving nano‐hydroxyapatite/chitosan/polyethylene glycol (n‐HAP/CS/PEG) has been successfully synthesized via co‐precipitation approach at room temperature. The purpose to synthesize such nanocomposite is to search for an ideal analogue which may mimick the composition of natural bone for bone tissue engineering with respect to suitable biocompatibility, cytotoxicity and mechanical properties. The FTIR spectra of n‐HAP/CS and n‐HAP/CS/PEG scaffolds indicated significant intermolecular interaction between the various components of both the nanocomposites. The results of XRD, TEM and TGA/DTA suggested that the crystallinity and thermal stability of the n‐HAP/CS/PEG scaffold have decreased and increased respectively, relative to n‐HAP/CS scaffold. The comparison of SEM images of both the scaffolds indicated that the incorporation of PEG influenced the surface morphology while a better in‐vitro bioactivity has been observed in n‐HAP/CS/PEG than in n‐HAP/CS based on SBF study, referring a greater possibility for making direct bond to living bone if implanted. Furthermore, MTT assay revealed superior non‐toxic nature of n‐HAP/CS/PEG to murine fibroblast L929 cells as compared to n‐HAP/CS. The comparative swelling studies of n‐HAP/CS/PEG and n‐HAP/CS scaffolds revealed a better swelling rate for n‐HAP/CS/PEG. Also n‐HAP/CS/PEG showed higher mechanical strength relative to n‐HAP/CS supportive of bone tissue ingrowths. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
This article describes the synthesis and properties of the first poly(arylene‐vinylene)‐based sensitizers for application in dye‐sensitized solar cells (DSSC). The polymers were prepared by the Suzuki–Heck copolymerization of potassium vinyltrifluoroborate (PVTB) with a mixture of dibromoaryl comonomers designed to obtain macromolecules able to bind onto the photoelectrode by means of carboxyphenylene units. The copolymerization reactions were carried out in the presence of an excess of PVTB to lower the molecular weights of the polymers, which were obtained as soluble materials. The polymers poly[(9,9‐didodecyl‐2,7‐fluorenylene)‐vinylene‐co‐(carboxy‐2,5‐phenylene)‐vinylene] ( P1 ), poly[(9,9‐didodecyl‐2,7‐fluorenylene)‐vinylene‐co‐(carboxy‐2,5‐phenylene)‐vinylene‐co‐(4,7‐benzothiadiazolylene)‐vinylene] ( P2 ), and poly[(9,9‐didodecyl‐2,7‐fluorenylene)‐vinylene‐co‐(carboxy‐2,5‐phenylene)‐vinylene‐co‐2,5‐thienylene‐vinylene] ( P3 ) were used in DSSC devices, obtaining conversion efficiencies up to 0.88% ( P3 ). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
The random copolymer, poly[lactide-co-glycotide-co-(epsilon-caprolactone)] (PLGACL) diacrylate was prepared by ring-opening polymerization of L-lactide, glycolide, and epsilon-caprolactone initiated with tetra(ethylene glycol). The diacrylated polymers were extensively characterized. With a UV embossing method, these copolymers were successfully fabricated into microchannels separated by microwalls with a high aspect (height/width) ratio. The PLGACL network films showed good cytocompatibility. Varieties of microstructures were fabricated, such as 10 x 40 x 60, 10 x 80 x 60, 25 x 40 x 60, or 25 x 80 x 60 microm(3) structures (microwall width x microchannel width x microwall height). The results demonstrated that smooth muscle cells (SMCs) can grow not only on the microchannel surfaces but also on the surfaces of the microwall and sidewall. The SMCs aligned along the 25 microm wide microwall with an elongated morphology and proliferated very slowly in comparison to those on the smooth surface with a longer cell-culture term. Few cells could attach and spread on the surface of the 40 microm wide microchannel, while the cells flourished on the 80 microm, or more than 80 microm, wide microchannel with a spindle morphology. The biophysical mechanism mediated by the micropattern geometry is discussed. Overall, the present micropattern, consisting of biodegradable and cytocompatible PLGACL, provides a promising scaffold for tissue engineering.  相似文献   

7.
Biodegradable poly(lactic-co-glycolic acid) (PLGA)/carboxyl-functionalized multi-walled carbon nanotube (c-MWCNT) nanocomposites were successfully prepared via solvent casting technique. Rat bone marrow-derived mesenchymal stem cells (MSCs) were employed to assess the biocompatibility of the nanocomposites in vitro. Scanning electron microscopy (SEM) observations revealed that c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLGA matrix. Surface properties were determined by means of static contact angle, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) analysis. The presence of c-MWCNTs increased the mechanical properties of the nanocomposites. Seven-week period in vitro degradation test showed the addition of c-MWCNTs accelerated the hydrolytic degradation of PLGA. In addition, SEM proved that the cells could adhere to and spread on films via cytoplasmic processes. Compared with control groups, MSCs cultured onto PLGA/c-MWCNT nanocomposites exhibited better adhesion and viability and also displayed significantly higher production levels of alkaline phosphatase (ALP) over 21 days culture. These results demonstrated that c-MWCNTs modified PLGA films were beneficial for promoting cell growth and inducing MSCs to differentiate into osteoblasts. This work presented here had potential applications in the development of 3-D scaffolds for bone tissue engineering.  相似文献   

8.
Engineering human cardiac tissue is a promising solution for myocardial repair of injured hearts and for drug screening. Herein, we examined the capability of chemically defined alginate scaffolds to promote cardiac tissue regeneration from human embryonic stem cell‐derived cardiomyocytes (hESC‐CMs) in serum‐free, chemically defined medium. The cells were single seeded or coseeded with human dermal fibroblasts (HFs) in macroporous scaffolds made from pristine alginate or alginate modified with arginine‐glycine‐aspartate (RGD) peptide and heparin‐binding peptide (HBP). Our results show that the addition of fibroblasts to the 3‐D culture is indispensable for the formation of functional cardiac tissues and that the presence of RGD/HBP attached to the alginate matrix further improves its functionality. The engineered tissue displayed the typical fiber morphology with massive striation. An increase in contraction amplitude and calcium transients with time, together with a decrease in excitation threshold, indicated advancement toward tissue maturation. Our results thus point to the importance of co‐cultivating fibroblasts with hESCs‐CMs in chemically defined peptide‐functionalized alginate scaffolds and culture medium for regenerating functional cardiac tissue in vitro.  相似文献   

9.
Risedronate‐anchored hydroxyapatite (HA‐RIS) nanocrystals were prepared with 4.1 wt % RIS and used for controlled surface‐initiated ring‐opening polymerization (ROP) of L ‐lactide (L ‐LA). The strong adsorption of RIS to HA surface not only led to enhanced dispersion of HA nanocrystals in water as well as in organic solvents but also provided alkanol groups as active initiating species for ROP of L ‐LA. HA‐RIS was characterized by thermogravimetric analysis, dynamic light scattering, 1H NMR, Fourier transform infrared spectrometer, and X‐ray diffraction. The graft polymerization of L ‐LA onto HA‐RIS took place smoothly in the presence of stannous octoate in toluene at 120 °C, resulting in HA/poly(L ‐LA) nanocomposites with high yields of 85–90% and high poly(L ‐LA) contents of up to 97.5 wt %. Notably, differential scanning calorimetry measurements revealed that the poly(L ‐LA) in HA/poly(L ‐LA) nanocomposites exhibited considerably higher melting temperatures (Tm = 173.3?178.1 °C) and higher degrees of crystallinity (Xc = 41.0?43.1%) as compared to poly(L ‐LA) homopolymer (Tm = 168.5 °C, Xc =25.7%). In addition, our initial results showed that these HA/poly(L ‐LA) nanocomposites could readily be electrospun into porous matrices. This study presented a novel and controlled synthetic strategy to HA/RIS/poly(L ‐LA) nanocomposites that are promising for orthopedic applications as well as for bone tissue engineering. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
Poly(lactide‐co‐glycolide) (PLGA) scaffolds embedded spatially with hydroxyapatite (HA) particles on the pore walls (PLGA/HA‐S) were fabricated by using HA‐coated paraffin spheres as porogens, which were prepared by Pickering emulsion. For comparisons, PLGA scaffolds loaded with same amount of HA particles (2%) in the matrix (PLGA/HA‐M) and pure PLGA scaffolds were prepared by using pure paraffin spheres as porogens. Although the three types of scaffolds had same pore size (450–600 µm) and similar porosity (90%–93%), the PLGA/HA‐S showed the highest compression modulus. The embedment of the HA particles on the pore walls endow the PLGA/HA‐S scaffold with a stronger ability of protein adsorption and mineralization as well as a larger mechanical strength against compression. In vitro culture of rat bone marrow stem cells revealed that cell morphology and proliferation ability were similar on all the scaffolds. However, the alkaline phosphatase activity was significantly improved for the cells cultured on the PLGA/HA‐S scaffolds. Therefore, the method for fabricating scaffolds with spatially embedded nanoparticles provides a new way to obtain the bioactive scaffolds for tissue engineering. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
高长有 《高分子科学》2011,29(2):233-240
The poly(lactide-co-glycolide)(PLGA) sponge fabricated by a gelatin porogen leaching method was filled with fibrin gel to obtain a hybrid scaffold for chondrocytes culture in vitro.The fibrin gel evenly distributed in the hybrid scaffold with visible fibrinogen fibers after drying.In vitro culture it was found that in the hybrid scaffold the chondrocytes distributed more evenly and kept a round morphology as that in the normal cartilage.Although the chondrocytes seeded in the control PLGA sponges showed similar proliferation behavior with that in the hybrid scaffolds,they were remarkably elongated,forming a fibroblast-like morphology.Moreover,a larger amount of glycosaminoglycans was secreted in the hybrid scaffolds than that in the PLGA sponges after in vitro culture of chondrocytes for 4 weeks.The results suggest that the fibrin/PLGA hybrid scaffold may be favorably applied for cartilage tissue engineering.  相似文献   

12.
Antimicrobial polymers have been widely reported to exert strong biocidal effects against bacteria. In contrast with antimicrobial polymers with aliphatic ammonium groups, polymers with anilinium groups have been rarely studied and applied as biocidal materials. In this study, a representative polymer with aniline side functional groups, poly(N,N‐dimethylaminophenylene methacrylamide) (PDMAPMA), was explored as a novel antimicrobial polymer. PDMAPMA was synthesized and its physicochemical properties evaluated. The methyl iodide‐quaternized polymer was tested against the Gram‐positive Staphylococcus aureus, with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 16–32 and 64–128 μg mL?1, respectively. Against the Gram‐negative Escherichia coli, the MIC and MBC were both 64–128 μg mL?1. To broaden the range of applications, PDMAPMA was coated on substrates via crosslinking to endow the surface with contact‐kill functionality. The effect of charge density of the coatings on the antimicrobial behavior was then investigated, and stronger biocidal performance was observed for films with higher charge density. This study of the biocidal behavior of PDMAPMA both in solution and as coatings is expected to broaden the application of polymers containing aniline side groups and provide more information on the antimicrobial behavior of such materials. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1908–1921  相似文献   

13.
Synthesis of a novel macroinimer comprising poly(ε‐caprolactone) (PCL) and thiophene (Th) and its use in electrochromic device (ECD) application have been reported. First, a novel Th monomer ( 5 ) with miktofuntional initiator groups (primary hydroxyl and tertiary bromide at the third position of the thiophene ring) was synthesized in a four‐step reaction sequence. Density functional theory‐predicted bond lengths, angles, and vibrations of 5 were in good agreement with available experimental vibrational spectra. Subsequently, ring‐opening polymerization of ε‐caprolactone (ε‐CL) was carried out in bulk using 5 as the initiator and tin(II) 2‐ethylhexanoate (Sn(Oct)2) as the catalyst at 115 °C, which led to α‐thiophene end‐capped PCL macroinimer (PCL‐Th). Furthermore, PCL‐Th macroinimer was used in electrochemical copolymerization with pyrrole (Py) and Th. PCL‐Th/PTh copolymer film synthesized on indium tin oxide‐coated glass slide showed electrochromic behavior. Optical analyses of the PCL‐Th/PTh copolymer film indicated that the copolymer film was suitable to be used as an anodically coloring material for ECD applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Two alternating medium band gap conjugated polymers (PBDT‐TPTI and PDTBDT‐TPTI) derived from 4,8‐bis(4,5‐dioctylthien‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene (BDT‐T) or 5,10‐bis(4,5‐didecylthien‐2‐yl)dithieno[2,3‐d:2′,3′‐d′]benzo[1,2‐b:4,5‐b′]dithiophene (DTBDT‐T) with pentacyclic aromatic lactam of N,N‐didodecylthieno[2′,3′:5,6]pyrido[3,4‐g]thieno[3,2‐c]‐iso‐quinoline‐5,11‐dione (TPTI), are synthesized and characterized. The comparative investigation of the photostabilities of the copolymers revealed that the PDTBDT‐TPTI film exhibited the comparable photostability in relative to P3HT. Meanwhile, the inverted photovoltaic cells (i‐PVCs) from the blend films of PBDT‐TPTI and/or PDTBDT‐TPTI with PC71BM, in which poly[(9,9‐bis(3′‐(N,N‐dimethylamino)propyl)‐2,7‐fluorene)‐alt‐2,7‐(9,9‐dioctylfluorene)] were used as cathode modifying interlayer, presented higher power conversion efficiencies (PCEs) of 5.98% and 6.05% with photocurrent response ranging from 300 nm to 650 nm in contrast with the PCEs of 4.48% for the optimal inverted PVCs from P3HT/PC71BM under AM 1.5 G 100 mW/cm2. The PCEs of the i‐PVCs from PBDT‐TPTI and PDTBDT‐TPTI were improved to 7.58% and 6.91% in contrast to that of 0.02% for the P3HT‐based i‐PVCs, and the photocurrent responses of the devices were extended to 300–792 nm, when the ITIC was used as electron acceptor materials. The results indicate that the PBDT‐TPTI and PDTBDT‐TPTI can be used as the promising alternatives of notable P3HT in the photovoltaic application. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 85–95  相似文献   

15.
We report a multi‐instrument characterization of the carbon particles in carbon/polymer/nanodiamond core‐shell materials used for high‐performance liquid chromatography. These particles are prepared by the carbonization/pyrolysis of poly(divinylbenzene) (PDVB) microspheres. Scanning electron microscopy showed that the particles (4.9 µm initially) decreased in size after air oxidation (to 4.4 µm) and again after carbonization (down to 3.5 µm) but remained highly spherical. Brunauer–Emmett–Teller measurements showed low surface areas initially (as received: 1.6 m2/g, after air oxidation: 2.6 m2/g) but high values after carbonization (445 m2/g). Fourier transform infrared spectroscopy revealed the changes in the functional groups after air oxidation (C = O and C–O stretches appear), carbonization (carbon‐oxygen containing moieties disappear), and acid treatment (reintroduction of carbon‐oxygen containing moieties). X‐ray photoelectron spectroscopy (XPS) and elemental analysis revealed the surface and bulk oxygen contents before and after treatments. By XPS, the atom percent oxygen for the as received, air oxidized, carbonized, and acid treated particles are 8.7, 16.6, 3.7, and 13.8, respectively, and by elemental analysis, the percent oxygen in the materials is 0.6, 8.1, 0.9, 16.9, respectively. A principal components analysis of time‐of‐flight secondary ion mass spectrometry data identified ions that were enhanced in the different materials, where almost 90% of the variation in the analyzed peak areas was captured by two principle components. X‐ray diffraction and Raman spectroscopy suggested that the carbonized PDVB was disordered. Thermogravimetric analysis showed significant differences between the differently treated PDVB microspheres. This work applies directly to a commercial product and the process for preparing it. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Metals with low melting points like gallium (mp. 30 °C) prove a new approach for the synthesis of MOFs. As the melting point of gallium is even lower than of the linker ligand imidazole, formation of the MOF , Im = imidazolate anion, ImH = imidazole, can be achieved by reaction of a melt of the referring metal with a melt of the ligand. Gallium is oxidised in the reaction, and hydrogen gas and the imidazolate amide as colourless single crystalline product are formed. At the melting point of imidazole (mp. 88–90 °C) two liquid phases are observed. Phase separation lasts until the reaction, starting at 120 °C, consumes the liquid reagents. We consider this a reaction on the phase border between the liquid phases as no mixing is observed. constitutes of a three‐dimensional framework structure with a 3,6 topology that is built of two Kagome nets sharing common connectivity points. Each Ga3+ ion is octahedrally coordinated by six nitrogen atoms of imidazolate and imidazole ligands. The framework exhibits a limited porosity of 8.5 % of accessible space and a diameter of 376–509 pm for the pore windows.  相似文献   

17.
A variety of conditions, including catalysts [CuCl, CuI, Cu2O, and Cu(0)], ligands [2,2′‐bipyridine (bpy), tris(2‐dimethylaminoethyl)amine (Me6‐TREN), polyethyleneimine, and hexamethyl triethylenetetramine], initiators [CH3CHClI, CH2I2, CHI3, and F(CF2)8I], solvents [diphenyl ether, toluene, tetrahydrofuran, dimethyl sulfoxide (DMSO), dimethylformamide, ethylene carbonate, dimethylacetamide, and cyclohexanone], and temperatures [90, 25, and 0 °C] were studied to assess previous methods for poly(methyl methacrylate)‐b‐poly(vinyl chloride)‐b‐poly(methyl methacrylate) (PMMA‐b‐PVC‐b‐PMMA) synthesis by the living radical block copolymerization of methyl methacrylate (MMA) initiated with α,ω‐di(iodo)poly(vinyl chloride). CH3CHClI was used as a model for α,ω‐di(iodo)poly(vinyl chloride) employed as a macroinitiator in the living radical block copolymerization of MMA. Two groups of methods evolved. The first involved CuCl/bpy or Me6‐TREN at 90 °C, whereas the second involved Cu(0)/Me6‐TREN in DMSO at 25 or 0 °C. Related ligands were used in both methods. The highest initiator efficiency and rate of polymerization were obtained with Cu(0)/Me6‐TREN in DMSO at 25 °C. This demonstrated that the ultrafast block copolymerization reported previously is the most efficient with respect to the rate of polymerization and precision of the PMMA‐b‐PVC‐b‐PMMA architecture. Moreover, Cu(0)/Me6‐TREN‐catalyzed polymerization exhibits an external first order of reaction in DMSO, and so this solvent has a catalytic effect in this living radical polymerization (LRP). This polymerization can be performed between 90 and 0 °C and provides access to controlled poly(methyl methacrylate) tacticity by LRP and block copolymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1935–1947, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号