首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bunches of ZnO nanowires have been synthesized by hydrothermal process with the assistance of cetyltrimethylammonium bromide. The obtained bunches of ZnO nanowires are hexagonal wurtzite structures, and they exhibit orange visible emission ~600 nm. It seems the orange emission ~600 nm is due to the presence of Zn(OH)2 on the surface of ZnO nanowires. On the basis of material information provided by X-ray diffraction, scanning electron microscopy and photoluminescence, a growth mechanism is proposed for the formation of bunches of ZnO nanowires.  相似文献   

2.
S-doped ZnO nanostructures such as nanonails and nanowires have been synthesized via a simple one-step catalyst-free thermal evaporation process on a large scale. The doping concentration of sulfur into ZnO nanonails and nanowire were 2 atm % and 7.5 atm %, respectively. Studies found that the S-doped ZnO nanonails and nanowires were single-crystalline wurtzite structure and grew along the (001) direction. The average diameters of the nanonails and nanowires were 70 and 50 nm, respectively. Low-temperature photoluminescence spectra of ZnO samples showed two luminescence peaks in the UV and green emission region, respectively. As the concentration of sulfur in the ZnO nanostructures increased, the intensity of the UV emission peak decreased dramatically, and it showed a little blue-shift while the intensity of the green emission increased greatly.  相似文献   

3.
We report on the growth of uniquely shaped ZnO nanowires with high surface area and patterned over large areas by using a poly(dimethylsiloxane) (PDMS) microfluidic channel technique. The synthesis uses first a patterned seed template fabricated by zinc acetate solution flowing though a microfluidic channel and then growth of ZnO nanowire at the seed using thermal chemical vapor deposition on a silicon substrate. Variations the ZnO nanowire by seed pattern formed within the microfluidic channel were also observed for different substrates and concentrations of the zinc acetate solution. The photocurrent properties of the patterned ZnO nanowires with high surface area, due to their unique shape, were also investigated. These specialized shapes and patterning technique increase the possibility of realizing one-dimensional nanostructure devices such as sensors and optoelectric devices.  相似文献   

4.
We report for the first time the fabrication of p-type SiC nanowire field-effect transistors (FETs) using an individual Al-doped 3C-SiC nanowire with a single crystalline structure. The Raman spectroscopy of the as-grown p-type wire indicates that the linewidth and peak intensity of LO-phonon bands are sensitive to temperature variations.  相似文献   

5.
ZnMgO nanostructures with wurtzite phase were prepared by thermal diffusion of Mg into the ZnO nanowires. As ZnO light-emitting devices have been operated by using ZnMgO layers as energy barrier layers to confine the carriers, it is essential to realize the characterization of ZnMgO particularly. In this work, the Mg content in Zn1−xMgxO alloy determined by X-ray diffraction (XRD) and photoluminescence (PL) shows a good coincidence. The variation of lattice constant and the blueshift of near-band-edge emission indicate that Zn2+ ions are successfully substituted by Mg2+ ions in the ZnO lattice. In Raman-scattering studies, the change of E2(high) phonon line shape in ZnO:Mg nanostructures reveals the microscopic substitutional disorder. In addition to the host phonons of ZnO, two additional bands around 383 and 510 cm−1 are presumably attributed to the Mg-related vibrational modes.  相似文献   

6.
Large-scale Ni-doped ZnO nanowire (NW) arrays are grown. The electrical conductivity of a single Ni-doped ZnO NW has been increased for 30 times. The photoluminescence (PL) spectrum of the doped ZnO NWs has a red shift, suggesting possible doping induced band edge bending. The doped NW arrays could be the basis for building integrated nanoscale transistors, sensors, and photodetectors.  相似文献   

7.
Zinc oxide photocatalyst was synthesized through a low‐temperature co‐precipitation process using zinc sulfate as precursor for the degradation of Acid Red 57 (AR57) under UV irradiation. The activities of the prepared photocatalyst at different calcination temperatures (400, 500, and 600 °C) were investigated. The synthesized zinc oxides were characterized by different techniques such as X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, N2 adsorption–desorption, and pH titration for the determination of the zero‐point charge (pHZPC). The efficiency of photocatalytic degradation of ZnO prepared at the calcination temperatures of 400, 500, and 600 °C was 90.03, 77.67, and 72.71%, respectively, after 190 min. The kinetics and scavengers of the reactive species during the degradation were also investigated. It was found that the degradation of AR57 fitted first‐order kinetics and the OH? radicals were the main species. During irradiation, the formation of OH? free radicals was ascertained by photoluminescence studies using terephthalic acid as the probe molecule.  相似文献   

8.
Cathodoluminescence spectra and electrical properties of the N doped and N–Al codoped p-type ZnO films and the dependence of these two properties on the post-annealing were investigated. Spectral analyses show that the intensity of the green emission strongly depends on the annealing ambient and closely relates with the width of the electron depletion region at the particle boundary. The conducting type and electrical properties of N doped and N–Al codoped ZnO films are greatly affected by the annealing process. The grain boundary effect was proposed to explain the green emission behavior and the p-type conduction in polycrystalline ZnO based films.  相似文献   

9.
A new route for synthesizing Ag-decorated ZnO nanowires (NWs) on conductive glass substrates using a one-step electrodeposition technique is described here. The structural, optical, and photoelectrochemical properties of Ag-decorated ZnO nanowires were studied in detail using techniques such X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, UV-visible spectroscopy, photoluminescence, and photoelectrochemical measurements. Both pure and Ag-decorated ZnO nanowires were found to crystallize in the wurtzite structure, irrespective of their Ag contents. Increasing the Ag content from pure ZnO NWs to 3% Ag ZnO NWs decreases the photoluminescence intensity, shifts the optical band gap to the red, and increases the photocurrent up to threefold. This behavior was attributed to the surface plasmon resonance effect induced by the Ag nanoparticles, which inhibits charge recombination and improves charge transport on the ZnO surface.  相似文献   

10.
Large-scale high quality CdS nanowires with uniform diameter were synthesized by using a rapid and simple solvothermal route. Field emission scan electron microscopy (FESEM) and transmission electron microscopy (TEM) images show that the CdS nanowires have diameter of about 26 nm and length up to several micrometres. High resolution TEM (HRTEM) study indicates the single-crystalline nature of CdS nanowires with an oriented growth along the c-axis direction. The optical properties of the products were characterized by UV-vis absorption spectra, photoluminescence spectra and Raman spectra. The resistivity, electron concentration and electron mobility of single NW are calculated by fitting the symmetric I-V curves measured on single NW by the metal-semiconductor-metal model based on thermionic field emission theory.  相似文献   

11.
以β-萘磺酸(NSA)为掺杂剂,采用电化学无模板法制备了聚吡咯(PPy)纳米线.研究了NSA浓度、吡咯(Py)单体浓度及反应温度对PPy纳米线形貌的影响.分别采用场发射扫描电子显微镜(FE-SEM)和拉曼光谱对PPy纳米线的结构形貌和化学结构进行了表征.结果表明,利用电化学无模板法可得到中空的PPy纳米线;NSA浓度会影响PPy纳米线的取向性;增大Py单体浓度,可制得圆锥状PPy纳米线;低温有利于合成形状细长、紧密堆积的PPy纳米线.PPy纳米线形貌受游离Py浓度及Py-NSA胶束数量影响,通过调节NSA浓度、Py浓度及反应温度改变游离Py浓度及Py-NSA胶束数量,可制得不同形貌的PPy纳米线.  相似文献   

12.
Attachment-driven morphology evolvement of rectangular ZnO nanowires   总被引:1,自引:0,他引:1  
The rectangular cross-sectional ZnO nanowires were synthesized in a solution method. An attachment-driven growth mechanism was proposed for the morphology evolvement of ZnO nanocrystals from nanoparticles to nanoplates and eventually to nanowires. Due to the pileup attachment of the nanoplates to recrystallize into nanowires, unique one-dimensional (1D) ZnO nanowires with the rectangular cross section were obtained, which is different from those nanowires in the previous reports. It is the first time the evidence that "oriented attachment" can occur not only for nanoparticles but also for nanoplates was obtained, suggesting that "oriented attachment" is an intrinsic behavior for nanosized materials. According to the growth model proposed based on the direct TEM observations, ZnO nanocrystals can be easily controlled as nanoparticles, nanoplates, or nanowires by tuning the synthetic parameters.  相似文献   

13.
ZnO nanowires (NWs) were synthesized on Au-coated Si (100) substrates by vapor transport method. The effect of high temperature annealing on the structural and chemical composition as well as thermal stability was studied. The as-prepared ZnO NWs was nearly stoichiometric and identified as hexagonal ZnO phase. After annealing at 1,473 K, the atomic ratio of O/Zn, the intensity of the diffraction peaks, and the diameter of nanowires were increased. The ZnO NWs were fragmented into nanocrystals and the fragments coalesced with each other after annealing at 1,673 K. The thermal stability of ZnO NWs was studied by thermo-gravimetric (TG) analysis. A sharp increase in the TG curves was observed and can be attributed to the oxidation of some possibly presented Zn atoms. The activation energy of oxidation of Zn interstitial atoms was found to be 484.81 kJ mol?1. A mass gain peak was observed after annealing at 1,473 K, but it was completely eliminated after annealing at 1,673 K.  相似文献   

14.
The terahertz absorption coefficient, index of refraction, and conductivity of nanostructured ZnO have been determined using time-resolved terahertz spectroscopy, a noncontact optical probe. ZnO properties were measured directly for thin films and were extracted from measurements of nanowire arrays and mesoporous nanoparticle films by applying Bruggeman effective medium theory to the composite samples. Annealing significantly reduces the intrinsic carrier concentration in the ZnO films and nanowires, which were grown by chemical bath deposition. The complex-valued, frequency-dependent photoconductivities for all morphologies were found to be similar at short pump-probe delay times. Fits using the Drude-Smith model show that films have the highest mobility, followed by nanowires and then nanoparticles, and that annealing the ZnO increases its mobility. Time constants for decay of photoinjected electron density in films are twice as long as those in nanowires and more than 5 times those for nanoparticles due to increased electron interaction with interfaces and grain boundaries in the smaller-grained materials. Implications for electron transport in dye-sensitized solar cells are discussed.  相似文献   

15.
Field effect transistors have been fabricated using Bi2S3 nanowires. Whether the contact is ohmic or non-ohmic, the current of Bi2S3 nanowires was found to increase remarkably in H2 compared to that in a vacuum. Carrier density and mobility within the nanowires and the contact barriers between the nanowires and the electrodes have been extracted using field effect and two-probe current-voltage curves. It was found that H2 enhances electronic mobility and carrier density within the nanowires dramatically. The effect of H2 on the contact barriers was observed to be negligible compared to the other two effects.  相似文献   

16.
A gas sensor that is based on the electrical conductivity changes effected by the adsoprtion of gases on single crystals of ZnO has been developed. The behaviour of the sensor in CO-, CH4-, H2- and H2O-in-air mixtures is described. The effect of temperature in the range 300 – 500 °C on the characteristics of the sensor has been investigated in detail. Data are presented describing the variation of conductance with CO concentration, the response and the recovery times when the sensor is exposed to step changes in gas concentration and the long-term behaviour of the sensor. The results indicate that the sensors are sensitive to CO and to H2 but are insensitive to CH4 and water vapour, have good long-term stability and have response time ∼ 2 min.  相似文献   

17.
Organic one-dimensional nanostructures are attractive building blocks for electronic, optoelectronic, and photonic applications. Achieving aligned organic nanowire arrays that can be patterned on a surface with well-controlled spatial arrangement is highly desirable in the fabrication of high-performance organic devices. We demonstrate a facile one-step method for large-scale controllable patterning growth of ordered single-crystal C(60) nanowires through evaporation-induced self-assembly. The patterning geometry of the nanowire arrays can be tuned by the shape of the covering hats of the confined curve-on-flat geometry. The formation of the pattern arrays is driven by a simple solvent evaporation process, which is controlled by the surface tension of the substrate (glass or Si) and geometry of the evaporation surface. By sandwiching a solvent pool between the substrate and a covering hat, the evaporation surface is confined to along the edge of the solvent pool. The geometry of the formed nanowire pattern is well defined by a surface-tension model of the evaporation channel. This simple method is further established as a general approach that is applicable to two other organic nanostructure systems. The I-V characteristics of such a parallel, organic, nanowire-array device was measured. The results demonstrate that the proposed method for direct growth of nanomaterials on a substrate is a feasible approach to device fabrication, especially to the fabrication of the parallel arrays of devices.  相似文献   

18.
19.
ZnO nanowires doped with a high concentration Ga, In, and Sn were synthesized via thermal evaporation. The doping content defined as X/(Zn + X) atomic ratio, where X is the doped element, is about 15% for all nanowires. The nanowires consist of single-crystalline wurtzite ZnO crystal, and the average diameter is 80 nm. The growth direction of vertically aligned Ga-doped nanowires is [001], while that of randomly tilted In- and Sn-doped nanowires is [010]. A correlation between the growth direction and the vertical alignment has been suggested. The broaden X-ray diffraction peaks indicate the lattice distortion caused by the doping, and the broadening is most significant in the case of Sn doping. The absorption and photoluminescence of Sn-doped ZnO nanowires shift to the lower energy region than those of In- and Ga-doped nanowires, probably due to the larger charge density of Sn.  相似文献   

20.
We present results of an electrical impedance spectroscopy investigation of the evolution of the aggregation of methyl orange (MO) in pure aqueous solutions as the concentration of the dye is varied. By applying the constant phase element (CPE) approximation to model the electrical response of the MO solutions, we have verified that the formation of dimers and oligomers can be recognized by specific signatures in the loss and capacitive components of the dielectric response of the system. We interpret these well-defined changes in the dielectric properties of the solutions as a result of molecular rearrangements caused by the aggregation process that alter the current circulation pathways and the electric dipole distribution. The fact that these specific changes in the dielectric behavior coincide with critical concentrations where dimer and oligomer formation in pure aqueous MO solutions are known to occur suggests that electrical impedance spectroscopy can be a competitive technique for the investigation of aggregation behavior in dyes and surfactants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号