首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular dynamics simulations and infrared spectroscopy were used to determine the hydrogen bond patterns of glycerol and its mixtures with water. The ability of glycerol/water mixtures to inhibit ice crystallization is linked to the concentration of glycerol and the hydrogen bonding patterns formed by these solutions. At low glycerol concentrations, sufficient amounts of bulk-like water exist, and at low temperature, these solutions demonstrate crystallization. As the glycerol concentration is increased, the bulk-like water pool is eventually depleted. Water in the first hydration shell becomes concentrated around the polar groups of glycerol, and the alkyl groups of glycerol self-associate. Glycerol-glycerol hydrogen bonds become the dominant interaction in the first hydration shell, and the percolation nature of the water network is disturbed. At glycerol concentrations beyond this point, glycerol/water mixtures remain glassy at low temperatures and the glycerol-water hydrogen bond favors a more linear arrangement. High glycerol concentration mixtures mimic the strong hydrogen bonding pattern seen in ice, yet crystallization does not occur. Hydrogen bond patterns are discussed in terms of hydrogen bond angle distributions and average hydrogen bond number. Shift in infrared frequency of related stretch and bend modes is also reviewed.  相似文献   

2.
To discuss the relationship between liquid, crystalline, and glassy states of ionic liquids, TOF-SIMS was used to analyze the glass-liquid transition, crystallization, and melting of 1-ethyl-3-methylimidazolium bis[trifluoromethanesulfonyl]imide ([emim][Tf(2)N]) at the molecular level at temperatures of 150-280 K. The [emim][Tf(2)N] molecules can be deposited thermally on a Ni(111) surface without decomposition. LiI was adsorbed onto the thin film in order to investigate the glass-liquid transition; it was incorporated in deeper layers at temperatures higher than 180 K. Crystallization of the film at around 200-220 K was identifiable from the abrupt increase in the [emim](+) yield, which probably results from the steric effect of the structured cations and anions forming anisotropic bonds in a specific layered structure. The glass-liquid transition and crystallization of [emim][Tf(2)N] differ significantly from those of water and alcohol in terms of the morphological change of the film and the interaction with adsorbed LiI. This behavior might be explained by the absence of a liquid-liquid phase transition for [emim][Tf(2)N]. The vapor-deposited thin films (2.5 and 5.0 monolayers) crystallize at around 200 K, but they melt gradually at temperatures considerably lower than the bulk melting point (ca. 260 K) because of the evolution of a quasi-liquid layer and the disappearance of a crystal template.  相似文献   

3.
An optical photobleaching technique has been used to measure the reorientation of dilute probes in freestanding polystyrene films as thin as 14 nm. Temperature-ramping and isothermal anisotropy measurements reveal the existence of two subsets of probe molecules with different dynamics. While the slow subset shows bulk-like dynamics, the more mobile subset reorients within a few hundred seconds even at T(g,DSC) - 25 K (T(g,DSC) is the glass transition temperature of bulk polystyrene). At T(g,DSC) - 5 K, the mobility of these two subsets differs by 4 orders of magnitude. These data are interpreted as indicating the presence of a high-mobility layer at the film surface whose thickness is independent of polymer molecular weight and total film thickness. The thickness of the mobile surface layer increases with temperature and equals 7 nm at T(g,DSC).  相似文献   

4.
Experiments in the past two decades have shown that the glass transition temperature of polymer films can become noticeably different from that of the bulk when the film thickness is decreased below ca. 100 nm. It is broadly believed that these observations are caused by a nanometer interfacial layer with dynamics faster or slower than that of the bulk. In this paper, we examine how this idea may be realized by using a two-layer model assuming a hydrodynamic coupling between the interfacial layer and the remaining, bulk-like layer in the film. Illustrative examples will be given showing how the two-layer model is applied to the viscosity measurements of polystyrene and polymethylmethacrylate films supported by silicon oxide, where divergent thickness dependences are observed.  相似文献   

5.
In ultrathin polymer films, the coupling between the segmental mobility, precursor of the molecular diffusion, and the crystallization rate is broken down because of interfacial interactions. In particular, in the presence of a reduced mobility layer at the interface with the substrate, the crystallization kinetics slow down at a length scale bigger than the one connected with the deviation from bulk behavior of the structural relaxation. By modeling the influence of the substrate interactions on the parameters governing the temperature evolution of the main relaxation time, it was possible to reproduce the effect of geometrical confinement on the quantities connected to the diffusion-limited crystallization rate. Upon reduction of the thickness or increasing of the substrate interaction, the films show an apparent higher glass stability in terms of an increase of the cold crystallization temperature and of the crystallization time. The deviations from bulk behavior were found to vanish above a crossover temperature as already observed for the phenomena connected to the glass transition.  相似文献   

6.
The Tg depression and kinetic behavior of stacked polystyrene ultrathin films is investigated by differential scanning calorimetry (DSC) and compared with the behavior of bulk polystyrene. The fictive temperature (Tf) was measured as a function of cooling rate and as a function of aging time for aging temperatures below the nominal glass transition temperature (Tg). The stacked ultrathin films show enthalpy overshoots in DSC heating scans which are reduced in height but occur over a broader temperature range relative to the bulk response for a given change in fictive temperature. The cooling rate dependence of the limiting fictive temperature, Tf′, is also found to be higher for the stacked ultrathin film samples; the result is that the magnitude of the Tg depression between the ultrathin film sample and the bulk is inversely related to the cooling rate. We also find that the rate of physical aging of the stacked ultrathin films is comparable with the bulk when aging is performed at the same distance from Tg; however, when conducted at the same aging temperature, the ultrathin film samples show accelerated physical aging, that is, a shorter time is required to reach equilibrium for the thin films due to their depressed Tg values. The smaller distance from Tg also results in a reduced logarithmic aging rate for the thin films compared with the bulk, although this is not indicative of longer relaxation times. The DSC heating curves obtained as a function of cooling rate and aging history are modeled using the Tool-Narayanaswamy-Moynihan model of structural recovery; the stacked ultrathin film samples show lower β values than the bulk, consistent with a broader distribution of relaxation times. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2741–2753, 2008  相似文献   

7.
Physical vapor deposition was employed to prepare amorphous samples of indomethacin and 1,3,5-(tris)naphthylbenzene. By depositing onto substrates held somewhat below the glass transition temperature and varying the deposition rate from 15 to 0.2 nm/s, glasses with low enthalpies and exceptional kinetic stability were prepared. Glasses with fictive temperatures that are as much as 40 K lower than those prepared by cooling the liquid can be made by vapor deposition. As compared to an ordinary glass, the most stable vapor-deposited samples moved about 40% toward the bottom of the potential energy landscape for amorphous materials. These results support the hypothesis that enhanced surface mobility allows stable glass formation by vapor deposition. A comparison of the enthalpy content of vapor-deposited glasses with aged glasses was used to evaluate the difference between bulk and surface dynamics for indomethacin; the dynamics in the top few nanometers of the glass are about 7 orders of magnitude faster than those in the bulk at Tg - 20 K.  相似文献   

8.
Thermal desorption spectroscopy is employed to examine transport mechanisms in structured, nanoscale films consisting of labeled amorphous solid water (ASW, H(2)(18)O, H(2)(16)O) and organic spacer layers (CCl(4), CHCl(3)) prior to ASW crystallization (T approximately 150-160 K). Self-transport is studied as a function of both the ASW layer and the organic spacer layer film thickness, and the effectiveness of these spacer layers as a bulk diffusion "barrier" is also investigated. Isothermal desorption measurements of structured films are combined with gas uptake measurements (CClF(2)H) to investigate water self-transport and changes in ASW film morphology during crystallization and annealing. CCl(4) desorption is employed as a means to investigate the effects of ASW film thickness and heating schedule on vapor-phase transport. Combined, these results demonstrate that the interlayer mixing observed near T approximately 150-160 K is inconsistent with a mechanism involving diffusion through a dense phase; rather, we propose that intermixing occurs via vapor-phase transport through an interconnected network of cracks/fractures created within the ASW film during crystallization. Consequently, the self-diffusivity of ASW prior to crystallization (T approximately 150-160 K) is significantly smaller than that expected for a "fragile" liquid, indicating that water undergoes either a glass transition or a fragile-to-strong transition at a temperature above 160 K.  相似文献   

9.
The effect of glassy skin formation on the drying of semicrystalline polymers was investigated with a comprehensive mathematical model developed for multicomponent systems. Polymers with high glass‐transition temperatures can become rubbery at room temperature under the influence of solvents. As the solvents are removed from the polymer, a glassy skin can form and continue to develop. The model takes into account the effects of diffusion‐induced polymer crystallization as well as glassy–rubbery transitions on the overall solvent content and polymer crystallinity. A Vrentas–Duda free‐volume‐based diffusion scheme and crystallization kinetics were used in our model. The polymer–solvent system chosen was a poly(vinyl alcohol) (PVA)–water–methanol system. The drying kinetics of PVA films were obtained by gravimetric methods with swollen films with known water/methanol concentrations. The overall drying behaviors of the polymer system determined by our model and experimental methods were compared and found to match well. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3191–3204, 2005  相似文献   

10.
The calorimetric glass transition behaviour in the amorphous forms of water is reviewed: for a heating rate of 30 K min−1 the onset temperature, or Tg, of the glass transition is 136±1 K for hyperquenched glassy water and annealed vapour-deposited amorphous solid water, and 129±1 K for the low-density form of pressure-amorphized hexagonal ice. The increase in heat capacity in the glass transition region is between 1.6–2 J K mol for the three amorphous forms. Annealing of the samples a few degrees below Tg or heating several degrees above the glass transition region has no influence on the onset temperatures at 136 K and 129 K respectively, which is contrary to ‘normal’ behaviour. The results are discussed with respect to the ‘structure’ of the three amorphous forms of water below the glass transition region and a “gel-like” state of water above Tg.  相似文献   

11.
Confined liquids can have properties that are poorly predicted from bulk parameters. We resolve with 0.5 nm resolution the nanoscale perturbations that interfaces cause on fluidity, in thin 3-methylpentane (3MP) films. The films of glassy 3MP are much less viscous at the vacuum-liquid interface and much more viscous at the 3MP-metal interface, compared to the bulk of the film. We find that the viscosity at the interfaces continuously returns to the bulk value over about a 3 nm distance. The amorphous 3MP films are constructed using molecular beam epitaxy on a Pt(111) substrate at low temperatures (<30 K). Ions are gently inserted at specific distances from the substrate with a 1 eV hydronium (D(3)O(+)) or Cs(+) ion beam. The voltage across the film, which is directly proportional to the position of the ions within the film, is monitored electrostatically as the film is heated at a rate of 0.2 K/s. Above the bulk glass transition temperature (T(g)) of 3MP (77 K), the ions are expected to begin to move down through the film. However, ion movement is observed at temperatures as low as 50 K near the vacuum interface, well below the bulk T(g). The fitted kinetics predict that at 85 K, the glass is about 6 orders of magnitude less viscous near the free interface compared to that of the bulk.  相似文献   

12.
The objective of this article was the determination of the degree of crystallinity of a series of heat-set poly(ethylene terephthalate) (PET) films and their study by thermomechanical analysis (TMA) in order to elucidate a peculiar behaviour that takes place around the glass transition region. For this purpose, amorphous cast Mylar films from DuPont were annealed at 115 °C for various periods of time. Four methods were used to study the crystallinity of the samples prepared: differential scanning calorimetry (DSC), density measurements (DM), wide-angle X-ray diffraction (WAXD), and Fourier transform infrared spectroscopy (FT-IR). From the results obtained, the following conclusions are drawn: amorphous PET Mylar films can be crystallized in a degree of about up to 30% after thermal treatment for 30 min (cold crystallization) above glass transition temperature. When these semicrystalline samples are subjected to TMA, they show a two step penetration of the probe into them, which decreases with the increase of the degree of crystallinity. The first step of penetration was attributed to the shrinkage of the amorphous or semicrystalline sample, which takes place on the glass transition temperature, while the second step was attributed to the continuous softening of the sample, and the reorganization of the matter which takes place on heating run due to cold crystallization.  相似文献   

13.
The traditional approach used to predict the ability of a glassy matrix to maximally preserve the activity of a protein solute is the glass transition temperature (T(g)) of the glass. Recently it has been shown that the addition of a low T(g) diluent (glycerol) can rigidify the structure of a high T(g) glassy matrix in binary glycerol-trehalose glasses. The optimal density of glycerol in trehalose minimizes the average mean square displacements of non-exchangeable protons in the glass samples. The amount of glycerol added to a trehalose glass coincides with the maximal recovery of biological activity in a separate study using similar binary glass samples. In this study, we use molecular dynamics (MD) simulations to investigate the dynamics of a hydrated protein encased in glycerol, unary trehalose and binary glycerol-trehalose glasses. We have found that we are able to reproduce the rigidification of the glycerol-trehalose glassy matrix and that there is a direct correlation between bulk glass dynamics and the extent of atomic fluctuation of protein atoms. The detailed microscopic picture that emerges is that protein dynamics are suppressed mainly by inertia of the bulk glass and to a lesser extent specific interactions at the protein-solvent interface. Thus, the inertia of the glassy matrix may be an influential factor in the determination of pharmaceutically relevant formulations.  相似文献   

14.
Studies on glass transition of myofibrillar proteins based edible films are scarce. This work aimed to determine the T g of edible films from Nile Tilapia myofibrillar proteins as a function of water content. Films with 30 or 70 g of glycerol/100 g of protein and several water content, were analyzed with a DSC TA 2010. Samples conditioned at water activity between 0.11 and 0.75, clearly showed one glass transition at low temperatures (<223 K), and another transition, less visible, above 273 K. DSC curves of samples conditioned ata w=0.84, also showed an endothermic peak below 273 K. These results rendered evidence of phase separation within edible films. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Single-molecule fluorescence microscopy was used to investigate the dynamics of perylene diimide (PDI) molecules in thin supported polystyrene (PS) films at temperatures up to 135 °C. Such high temperatures, so far unreached in single-molecule spectroscopy studies, were achieved using a custom-built setup which allows for restricting the heated mass to a minimum. This enables temperature-dependent single-molecule fluorescence studies of structural dynamics in the temperature range most relevant to the processing and to applications of thermoplastic materials. In order to ensure that polymer chains were relaxed, a molecular weight of 3000 g/mol, clearly below the entanglement length of PS, was chosen. We found significant heterogeneities in the motion of single PDI probe molecules near T(g). An analysis of the track radius of the recorded single-probe molecule tracks allowed for a distinction between mobile and immobile molecules. Up to the glass transition temperature in bulk, T(g,bulk), probe molecules were immobile; at temperatures higher than T(g,bulk) + 40 K, all probe molecules were mobile. In the range between 0 and 40 K above T(g,bulk) the fraction of mobile probe molecules strongly depends on film thickness. In 30-nm thin films mobility is observed at lower temperatures than in thick films. The fractions of mobile probe molecules were compared and rationalized using Monte Carlo random walk simulations. Results of these simulations indicate that the observed heterogeneities can be explained by a model which assumes a T(g) profile and an increased probability of probe molecules remaining at the surface, both effects caused by a density profile with decreasing polymer density at the polymer-air interface.  相似文献   

16.
Below a critical thickness, of about 60 nm, the glass transition temperature of polystyrene (PS) films decreases with film thickness, as demonstrated using free‐standing films. A geometrical model is developed here describing this phenomenon in the case of ideal (Gaussian) chains. This model, which can be considered as an application of the free volume model, assumes that the decrease of the glass transition temperature from thick to ultrathin films is due to the modification of the interpenetration between neighboring chains. The theoretical curve deduced from the model is in excellent agreement with the PS experimental results, without using any adjustable parameters. From these results, it can be concluded that new chain motions, usually buried in bulk samples, are expressed by the presence of the surface. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 10–17, 2007  相似文献   

17.
Glasses of the composition 2TeO2–V2O5 were fabricated via the conventional melt-quenching technique. The amorphous and the glassy nature of the as-quenched samples were confirmed by X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC), respectively. The glass transition and crystallization parameters were evaluated under non-isothermal conditions using DSC. X-ray diffraction studies confirmed the presence of partially oriented crystallites in the heat-treated glasses. Kauzmann temperature (lower bound for the kinetically observed glass transition) was deduced from the heating rate dependent glass transition and crystallization temperatures.  相似文献   

18.
Self-diffusion coefficients for the low molecular weight glass former o-terphenyl have been measured near Tg by isothermally desorbing thin film bilayers of deuterio and protio o-terphenyl in a vacuum chamber. We observe translational diffusion that is about 100 times faster at Tg + 3 K than the Stokes-Einstein prediction. Predictions from random first order transition theory and a dynamic facilitation approach are in reasonable agreement with our results; in these approaches, enhanced translational diffusion is associated with spatially heterogeneous dynamics. Self-diffusion controls crystallization in o-terphenyl for most of the supercooled liquid regime, but at temperatures below Tg + 10 K, the reported crystallization rate increases suddenly while the self-diffusion coefficient does not. This work and previous work on trisnaphthylbenzene both find a self-diffusion-controlled crystal growth regime and an enhancement in self-diffusion near Tg, suggesting that these phenomena are general characteristics of fragile low molecular weight glass formers. We discuss the width of the relaxation time distributions of o-terphenyl and trisnaphthylbenzene as they relate to the observation of enhanced translational diffusion.  相似文献   

19.
Differential scanning calorimetry (DSC) and cryomicroscopy were employed to investigate the glass transition and enthalpy relaxation behaviors of ethylene glycol (EG) and its aqueous solution (50% EG) with different crystallization percent. Isothermal crystallization method was used in devitrification region to get different crystallinity after samples quenched below glass transition temperature. The DSC thermograms upon warming showed that the pure EG has a single glass transition, while the 50% EG solution has two if the solution crystallized partially. It is believed that the lower temperature transition represents the glass transition of bulk amorphous phase of EG aqueous solution glass state, while the higher one is related to ice inclusions, whose mobility is restricted by ice crystal. Cryomicroscopic observation indicated that the EG crystal has regular shape while the ice crystal in 50% EG aqueous solution glass matrix has no regular surface. Isothermal annealing experiments at temperatures lower than Tg were also conducted on these amorphous samples in DSC, and the results showed that both the two amorphous phases presented in 50% EG experience enthalpy relaxation. The relaxation process of restricted amorphous phase is more sensitive to annealing temperature.  相似文献   

20.
An increasing amount of experimental data now supports the idea that the dynamics of thin polymer films is different from bulk. An experimental consensus now supports the previously controversial view that glass transition temperatures of thin polymer films on weakly interacting substrates are reduced from bulk values, but evidence for whether the surface has a higher mobility than the bulk is still contradictory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号