首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The origin of the extent of charging and the mechanism by which multiply charged ions are formed in electrospray ionization have been hotly debated for over a decade. Many factors can affect the number of charges on an analyte ion. Here, we investigate the extent of charging of poly(propyleneimine) dendrimers (generations 3.0 and 5.0), cytochrome c, poly(ethylene glycol)s, and 1,n-diaminoalkanes formed from solutions of different composition. We demonstrate that in the absence of other factors, the surface tension of the electrospray droplet late in the desolvation process is a significant factor in determining the overall analyte charge. For poly(ethylene glycol)s, 1,n-diaminoalkanes, and poly(propyleneimine) dendrimers electrosprayed from single-component solutions, there is a clear relationship between the analyte charge and the solvent surface tension. Addition of m-nitrobenzyl alcohol (m-NBA) into electrospray solutions increases the charging when the original solution has a lower surface tension than m-NBA, but the degree of charging decreases when this compound is added to water, which has a higher surface tension. Similarly, the charging of cytochrome c ions formed from acidified denaturing solutions generally increases with increasing surface tension of the least volatile solvent. For the dendrimers investigated, there is a strong correlation between the average charge state of the dendrimer and the Rayleigh limiting charge calculated for a droplet of the same size as the analyte molecule and with the surface tension of the electrospray solvent. A bimodal charge distribution is observed for larger dendrimers formed from water/m-NBA solutions, suggesting the presence of more than one conformation in solution. A similar correlation is found between the extent of charging for 1,n-diaminoalkanes and the calculated Rayleigh limiting charge. These results provide strong evidence that multiply charged organic ions are formed by the charged residue mechanism. A significantly smaller extent of charging for both dendrimers and 1,n-diaminoalkanes would be expected if the ion evaporation mechanism played a significant role.  相似文献   

2.
The use of m-nitrobenzyl alcohol (m-NBA) to enhance charging of noncovalent complexes formed by electrospray ionization from aqueous solutions was investigated. Addition of up to 1% m-NBA can result in a significant increase in the average charging of complexes, ranging from ∼13% for the homo-heptamer of NtrC4-RC (317 kDa; maximum charge state increases from 42+ to 44+) to ∼49% for myoglobin (17.6 kDa; maximum charge state increases from 9+ to 16+). Charge state distributions of larger complexes obtained from heated solutions to which no m-NBA was added are remarkably similar to those containing small amounts of m-NBA. Dissociation of the complexes through identical channels both upon addition of higher concentrations of m-NBA and heating is observed. These results indicate that the enhanced charging upon addition of m-NBA to aqueous electrospray solutions is a result of droplet heating owing to the high boiling point of m-NBA, which results in a change in the higher-order structure and/or dissociation of the complexes. For monomeric proteins and small complexes, the enhancement of charging is lower for heated aqueous solutions than from solutions with m-NBA because rapid folding of proteins from heated solutions that do not contain m-NBA can occur after the electrospray droplet is formed and is evaporatively cooled.  相似文献   

3.
The effects of two supercharging reagents, m-nitrobenzyl alcohol (m-NBA) and sulfolane, on the charge-state distributions and conformations of myoglobin ions formed by electrospray ionization were investigated. Addition of 0.4% m-NBA to aqueous ammonium acetate solutions of myoglobin results in an increase in the maximum charge state from 9+ to 19+, and an increase in the average charge state from 7.9+ to 11.7+, compared with solutions without m-NBA. The extent of supercharging with sulfolane on a per mole basis is lower than that with m-NBA, but comparable charging was obtained at higher concentration. Arrival time distributions obtained from traveling wave ion mobility spectrometry show that the higher charge state ions that are formed with these supercharging reagents are significantly more unfolded than lower charge state ions. Results from circular dichroism spectroscopy show that sulfolane can act as chemical denaturant, destabilizing myoglobin by ∼1.5 kcal/mol/M at 25 °C. Because these supercharging reagents have low vapor pressures, aqueous droplets are preferentially enriched in these reagents as evaporation occurs. Less evaporative cooling will occur after the droplets are substantially enriched in the low volatility supercharging reagent, and the droplet temperature should be higher compared with when these reagents are not present. Protein unfolding induced by chemical and/or thermal denaturation in the electrospray droplet appears to be the primary origin of the enhanced charging observed for noncovalent protein complexes formed from aqueous solutions that contain these supercharging reagents, although other factors almost certainly influence the extent of charging as well.  相似文献   

4.
This work was aimed at probing the influence of solvent surface tension on protein ionization by electrospray. In particular, we were interested in testing the previously suggested hypothesis that the charge-state distributions (CSDs) of proteins in electrospray ionization mass spectrometry (ESI-MS) are controlled by the surface tension of the least volatile solvent component. In the attempt to minimize uncontrolled conformational effects, we used acid-sensitive proteins (cytochrome c and myoglobin) at low pH or highly stable proteins (ubiquitin and lysozyme) in the presence of low concentrations of organic solvents. A first set of experiments compared the effect of 1- and 2-propanol. These two alcohols have similar chemico-physical properties but values of vapor pressure below and above that of water, respectively. Both compounds have much lower surface tension than water. The solvents employed allowed testing of the influence of surface tension on protein spectra obtained from similarly denaturing solutions. The compared solvent conditions gave rise to very similar spectra for each tested protein. We then investigated the effect of the addition of dimethyl sulfoxide to acid-unfolded proteins. We observed enhanced ionization in the presence of acetic or formic acid, consistent with the previously described supercharging effect, but almost no shift of the CSD in the presence of HCl. Finally, we analyzed thermally denatured cytochrome c, to obtain reference spectra of the unfolded protein in high-surface-tension solutions. Also in this case, the CSD of the unfolded protein was shifted towards lower m/z values relative to low-surface-tension systems. In contrast to the other results reported here, this effect is consistent with an influence of solvent surface tension on CSD. The magnitude of the effect, however, is much smaller than predicted by the Rayleigh equation. The results presented here are not easy to reconcile with the hypothesis that the maximum charge state exhibited by proteins in ESI-MS reflects the Rayleigh-limit charge of the precursor droplet. The data are discussed with reference to models for the mechanism of electrospray ionization.  相似文献   

5.
This review reports the results of some studies carried out by us on the role of pneumatic aspects in electrospray and desorption electrospray surface ionization, with the aim to propose some relevant aspects of the mechanisms involved in these ionization methods. Electrospray ion sources, with the exception of the nano- electrospray source, operate with the concurrent action of a strong electrical field and a supplementary coaxial gas flow. The electrical field is responsible for electrospraying of the analyte solution but the use of a coaxial gas flow leads to a significant increase of the analyte signal and allows the use of higher solution flows. However, by employing capillary voltages much lower than those necessary to activate the electrospray phenomenon, analyte ions are still observed and this indicates that different mechanisms must be operative for ion production. Under these conditions, ion generation could take place from the neutral pneumatically sprayed droplet by field-induced droplet ionization. Also in the case of desorption electrospray ionization (DESI), and without any voltage on the spraying capillary as well as on the surface of interest, ions of analytes present on the surface become detectable and this shows that desorption/ionization of analytes occurs by neutral droplets impinging the surface. Consequently, the pneumatic effect of the impinging droplets plays a relevant role, and for these reasons the method has been called pneumatic assisted desorption (PAD). Some analogies existing between PAD and surface activated chemical ionization (SACI), based on the insertion of a metallic surface inside an atmospheric pressure chemical ionization source operating without corona discharge, are discussed.  相似文献   

6.
Most commercial recombinant proteins used as molecular biology tools, as well as many academically made preparations, are generally maintained in the presence of high glycerol concentrations after purification to maintain their biological activity. The present study shows that larger proteins containing high concentrations of glycerol are not amenable to analysis using conventional electrospray ionization mass spectrometry (ESI-MS) interfaces. In this investigation the presence of 25% (v/v) glycerol suppressed the signals of Taq DNA polymerase molecules, while 1% (v/v) glycerol suppressed the signal of horse heart myoglobin. The signal suppression was probably caused by the interaction of glycerol molecules with the proteins to create a shielding effect that prevents the ionization of the basic and/or acidic groups in the amino acid side chains. To overcome this difficulty the glycerol concentration was decreased to 5% (v/v) by dialyzing the Taq polymerase solution against water, and the cone voltage in the ESI triple-quadrupole mass spectrometer was set at 80-130 V. This permitted observation of a mass spectrum that contained ions corresponding to protonation of up to 50% of the ionizable basic groups. In the absence of glycerol up to 85% of the basic groups of Taq polymerase became ionized, as observed in the mass spectrum at relatively low cone voltages. An explanation of these and other observations is proposed, based on strong interactions between the protein molecules and glycerol. For purposes of comparison similar experiments were performed on myoglobin, a small protein with 21 basic groups, whose ionization was apparently suppressed in the presence of 1% (v/v) glycerol, since no mass spectrum could be obtained even at high cone voltages.  相似文献   

7.
The conformation dependence of protein spectra recorded by electrospray ionization mass spectrometry (ESI-MS) is an interesting and useful phenomenon, whose origin is still the object of debate. Different mechanisms have been invoked in the attempt to explain the lower charge state of folded versus unfolded protein ions in ESI-MS, such as electrostatic repulsions, solvent accessibility, charge availability, and native-like interactions. In this work we try to subject to direct experimental test the hypothesis that conformation-dependent neutralization of charges with polarity opposite to the net charge of the protein ion could play a critical role in such an effect. We present results of time-of-flight nano-ESI-MS on the peptide angiotensin II, indicating that negative charges of carboxylate groups can contribute to spectra recorded in positive-ion mode when stabilized by favorable electrostatic interactions, which is the central assumption of our hypothesis. Comparison of horse and spermwhale myoglobin (Mb) shows that changing the total number of basic residues within a given three-dimensional structure shifts the charge-state distribution (CSD) of the folded protein in positive-ion mode. This result appears to be in contrast to models in which electrostatic repulsions or availability of charges in the ESI droplets represent the limiting factor for the ionization of folded protein ions in ESI-MS. At the same time, it suggests a role of acidic residues in conformational effects in positive-ion mode. Furthermore, an attempt is made to rationalize those cases in which, in contrast, the main charge state observed in ESI-MS under non-denaturing conditions deviates considerably from the net charge expected on the basis of the amino-acid composition. These cases usually correspond to proteins with quite balanced content in basic and acidic residues, suggesting that this might be a factor influencing their charging behavior in ESI-MS. Experiments on mutants of ribonuclease Sa (RNase Sa) reveal that progressively reducing the excess of acidic residues, replacing them by lysine, causes almost no shift in the spectrum of the folded protein in negative-ion mode. Analogously, variants with an excess of three or five basic residues give similar spectra in positive-ion mode. These results indicate a lower limit to the extent of ionization observable by ESI-MS (6- or 8+ in the case of RNase Sa in water). Below such limit of net charge, changes in the relative amount of ionizable side chains do not affect the qualitative features of the observed CSDs. A progressive loss of signal intensity caused by the mutations in negative-ion mode suggests that low charge states might also be counterselected, even within the m/z range theoretically accessible to the instrument.  相似文献   

8.
Hu B  Yang S  Li M  Gu H  Chen H 《The Analyst》2011,136(18):3599-3601
The high-throughput and sensitive characterization of native proteins in biological samples is of increasing interest in multiple disciplines. Extractive electrospray ionization (EESI) forms ions of native proteins including lysozyme, α-chymotrypsin, myoglobin, human serum albumin, RNAse A and blood hemoglobin in extremely complex biosamples or PBS buffer solutions by softly depositing charges on the protein molecules. This method produces no significant conformational changes of the proteins in the ion formation process, and features direct detection of trace proteins present in biological matrices. The detection limit of low pmol L(-1) for lysozyme in untreated biological liquids such as human urine and tears was demonstrated using EESI mass spectrometry (MS), showing an attractive MS platform for the direct analysis of native proteins in actual biological samples.  相似文献   

9.
Although multiple charging in electrospray ionization (ESI) is essential to protein mass spectrometry, the underlying mechanism of multiple charging has not been explicated. Here, we present a new theory to describe ESI of native-state proteins and predict the number of excess charges on proteins in ESI. The theory proposes that proteins are ionized as charged residues in ESI, as they retain residual excess charges after solvent evaporation and do not desorb from charged ESI droplets. However, their charge state is not determined by the Rayleigh limit of a droplet of similar size to the protein; rather, their final charge state is determined by the electric field-induced emission of small charged solute ions and clusters from protein-containing ESI droplets. This theory predicts that the number of charges on a protein in ESI should be directly proportional to the square of the gas-phase protein diameter and to E*, the critical electric field strength at which ion emission from droplets occurs. This critical field strength is determined by the properties of the excess charge carriers (i.e., the solute) in droplets. Charge-state measurements of native-state proteins with molecular masses in the 5-76 kDa range in ammonium acetate and triethylammonium bicarbonate are in excellent agreement with theoretical predictions and strongly support the mechanism of protein ESI proposed here.  相似文献   

10.
11.
Glycerol is widely used as protein stabilizer, in both local and commercial preparations, so it has become necessary to develop methods for mass spectrometric analysis of protein preparations in the presence of glycerol. However, this stabilizing agent may cause signal suppression when present in high concentrations, and is also known to induce protein supercharging even at low concentrations. This work reports the use of electrospray ionization (ESI) mass spectrometry to characterize glycerol-mediated protein oligomerization. This phenomenon seems to involve the formation of strong non-covalent interactions between protein and glycerol involving close contact between the monomers, leading to formation of protein oligomers adducted with glycerol molecules under the characteristic analytical conditions of the ESI interface. At high orders of oligomerization a lower number of glycerol molecules is required to maintain the high oligomeric states than for the dimers and trimers, and it is possible that for the higher oligomers the monomers become so close to one another that non-covalent bonds between the side chains of the amino acid residues in the proteins may be established.  相似文献   

12.
13.
The behavior of the analyte molecules inside the neutral core of the charged electrospray (ES) droplet is not unambiguously known to date. The possibility of protein conformational change inside the charged ES droplet has been investigated. The ES droplets encapsulating the protein molecules were exposed to the acetic acid vapor in the ionization chamber to absorb the acetic acid vapor. Because of the faster evaporation of water than that of acetic acid, the droplets became enriched with acetic acid and thus altered the solvent environment (e.g. pH and polarity) of the final charged droplets from where the naked charged analytes (proteins) are formed. Thus, the perturbation of the ES droplet solvent environment resulted in the protein conformational change (unfolding) during the short lifespan of the ES droplet and that is reflected by the multimodal charge state distribution in the corresponding mass spectra. Further, the extent of this conformational change inside the ES droplet was found to be related to the structural flexibility of the protein. Although the protein conformational change inside the ES droplet has been driven by using acetic acid vapor in the present study, the results would help in the near future to understand the spontaneity of the conformational change of the analyte on the millisecond timescale of phase transition in the natural way of ES process. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Mechanistic investigation of ionization suppression in electrospray ionization   总被引:10,自引:0,他引:10  
We show results from experiments designed to determine the relative importance of gas phase processes and solution phase processes into ionization suppression observed in biological sample extracts. The data indicate that gas phase reactions leading to the loss of net charge on the analyte is not likely to be the most important process involved in ionization suppression. The results point to changes in the droplet solution properties caused by the presence of nonvolatile solutes as the main cause of ionization suppression in electrospray ionization of biological extracts.  相似文献   

16.
The S-nitrosylation of proteins is involved in the trafficking of nitric oxide (NO) in intra- and extracellular milieus. To establish a mass spectrometric method for identifying this post-translational modification of proteins, a synthetic peptide and transthyretin were S-nitrosylated in vitro and analyzed by electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The intact molecular ion species of nitrosylated compounds was identified in the ESI mass spectrum without elimination of the NO group. However, the labile nature of the S-NO bond was evident when the in-source fragmentation efficiently generated [M + H - 30](+) ions. The decomposition was prominent for multiply charged transthyretin ions with high charge states under ordinary ESI conditions, indicating that the application of minimum nozzle potentials was essential for delineating the stoichiometry of nitrosylation in proteins. With MALDI, the S-NO bond cleavage occurred during the ionization process, and the subsequent reduction generated [M + H - 29](+) ions.  相似文献   

17.
18.
Electrospray ionization (ESI) mechanisms are highly complex, due to a series of physical and chemical phenomena taking place on a complex system, as a solution is. In fact, even if the solution of an analyte in a protic medium can be considered at first sight to be a two-component system, the presence of solvent dissociation equilibria and the possible interactions solvent-solvent dissociation products, solvent dissociation products-analyte make this system highly complex, also for the presence of possible ionic compounds (for example, Na(+), K(+)) which strongly affect the above equilibria. A high number of research articles have been published, mainly devoted to charged droplet production and to gas-phase ion generation. They all show the high complexity of the processes affecting electrospray measurements related to either the chemical equilibria present in the condensed phase and to electrolysis processes at the emitter tip or to the processes occurring in the sprayed droplets. As a result, the chemical composition inside the small droplets from which the analyte ions are generated can be significantly different from those in sprayed solution. In this review, after a short survey of the proposed ESI mechanisms, some experiments are described. They were performed to examine if ion mobility in solution, before the formation of the sprayed charged droplets, can affect the ESI results. The data, obtained by studying both inorganic and organic analytes, indicate that the ESI spectra are dependent on the analyte dimension and charge state which, as a consequence, affect their ion mobility in solution.  相似文献   

19.
Correct charge state assignment is crucial to assigning an accurate mass to supramolecular complexes analyzed by electrospray mass spectrometry. Conventional charge state assignment techniques fall short of reliably and unambiguously predicting the correct charge state for many supramolecular complexes. We provide an explanation of the shortcomings of the conventional techniques and have developed a robust charge state assignment method that is applicable to all spectra.  相似文献   

20.
Transition metal ions are important in biological regulation partly because they can bind to and stabilize protein surface domain structures in specific conformations that are involved in key molecular recognition events. There are two C2-C2 type zinc-finger sequences within the highly conserved DNA-binding domain of the estrogen receptor protein (ERDBD). Electrospray ionization (ESI) mass spectrometry has been used to demonstrate that the metal-binding sites within the 71-residue ERDBD can bind either Zn (up to 2) or Cu (up to 4). Evidence for the induction and/or stabilization of a different conformational state with bound Cu is revealed by a characteristic shift in the ESI charge envelope. The 10+ charge state is most abundant for the fully reduced ERDBD apopeptide and the ERDBD-Zn holopeptide (bound Zn does not alter the charge envelope). In contrast, the 8+ charge state is typically the optimum charge state observed for the ERDBD-Cu holopeptide; indeed, the entire charge envelope is frame-shifted to lower charge states with bound Cu. Interpretation of the altered charge states is simplified because (i) a single type of metal-binding ligand (sulfur) is involved in the case of both Zn and Cu binding, and (ii) the two different metal cations are both divalent. Thus, it is likely that the dissimilar charge envelopes represent different peptide conformers, each of which is stabilized by a different type of bound metal ion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号