首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
There is a substantial need for novel measurement techniques that enable non-invasive spatially resolved observation of biofouling in nanofiltration (NF) and reverse osmosis (RO) membrane modules. Such measurements will enhance our understanding of the key design and operational parameters influencing biofilm fouling. In this study we demonstrate the first application of nuclear magnetic resonance microscopy (NMR) to a spiral wound reverse osmosis (RO) membrane module. The presented NMR protocols allow the extraction of the evolution with biofouling of (i) the spatial biofilm distribution in the membrane module, (ii) the spatially resolved velocity field and (iii) displacement propagators, which are distributions of molecular displacement of a passive tracer (in our case, water) in the membrane. From these measurements, the effective membrane surface area is quantified. Despite the opaque nature of membrane design, NMR microscopy is shown to be able to provide a non-invasive quantitative measurement of RO membrane biofouling and its impact on hydrodynamics and mass transport. Minimal biofilm growth is observed to have a substantial impact on flow field homogeneity.  相似文献   

2.
Effect of process parameters on transmembrane flux during direct osmosis   总被引:1,自引:0,他引:1  
Direct osmosis is a non-thermal membrane process employed for the concentration of fruit juices at ambient temperature and atmospheric pressure, thereby maintaining the organoleptic and nutritional properties of fruit juices. In the present study, concentration of pineapple juice by direct osmosis was explored. Aqueous solution of sucrose (0–40%, w/w)–sodium chloride (0–26%, w/w) combination was investigated as an alternative osmotic agent. The sucrose–sodium chloride combination can overcome the drawback of sucrose (low flux) and sodium chloride (salt migration) as osmotic agents during direct osmosis process. The effect of the hydrodynamic conditions in the module and feed temperature (25–45 °C) on transmembrane flux was evaluated. For a range of hydrodynamic conditions studied, it was observed that transmembrane flux increases with Reynolds number. The increase in feed temperature resulted in an increase in transmembrane flux. The pineapple juice was concentrated upto a total soluble solids content of 60 °Brix at ambient temperature. The effect of direct osmosis process on physico-chemical characteristics of pineapple juice was also studied. The ascorbic acid content was well preserved in the pineapple juice concentrate by direct osmosis process.  相似文献   

3.
基于海水淡化的正渗透膜分离技术的发展   总被引:3,自引:0,他引:3  
近年来,水资源危机日益加重。在海水淡化技术中,与反渗透分离技术相比,正渗透分离技术作为一种低能耗、绿色的解决方案,具有明显优势,在国际上得到了广泛的重视,是膜分离技术的研究热点之一。本文从正渗透膜材料结构与性能关系的角度,对膜材料的最新进展进行了综述,同时分析了汲取液的常见类型,并简述了正渗透分离技术的新应用,展望了其未来的发展前景。  相似文献   

4.
This paper describes a systematic study of biofouling in reverse osmosis process using model bacteria of Pseudomonas fluorescens and employing a sodium chloride tracer response technique for fouling characterization. It was found that the growth of biofilm at constant flux following initial bacteria colonization of the membrane surface increased with imposed flux. The rationale was that biofilm growth was nutrient dependent, where the nutrient availability at the membrane wall was controlled by the magnitude of concentration polarization, which is driven by flux. The salt tracer response showed that the biofouling comprised a hydraulic resistance and induced an enhanced osmotic pressure phenomenon; known as the biofilm enhanced osmotic pressure (BEOP) effect [M. Herzberg, M. Elimelech, Biofouling of reverse osmosis membranes: role of biofilm-enhanced osmotic pressure, Journal of Membrane Science 295 (2007) 11–20], due to hindered back diffusion of solutes through the tortuous path of the heterogeneous structure of the biofilm. For the conditions studied, the contribution of BEOP to transmembrane pressure increase was greater than the hydraulic resistance.  相似文献   

5.
Osmotic backwash mechanism of reverse osmosis membranes   总被引:1,自引:1,他引:0  
A new osmotic backwash (BW) model for reverse osmosis (RO) membranes was developed for conditions of no applied pressures across the membrane. This analytical model has one adjustable parameter representing the coefficient of a linearized convection term in the general convection–diffusion equation. An experimental RO/BW system was used for 12 data sets to verify the proposed BW model and illustrate its predictability. Results show deviations of the model from the data within a range of 5–15%. The described dilution mechanism of the feed concentration polarization (CP) layer is based on RO originated concentrated layer detachment from the membrane surface followed by its gradual dilution.The understanding gained in this research may be applied to automatic RO/BW cleaning cycles. A dominant RO parameter of the BW process is the RO initial driving force—the concentration difference across the membrane. Other RO process parameters – applied pressure and feed flow rate – have lesser effects. Both theoretical and experimental methods provide quantitative relationships between RO and BW variables that enable an understanding and control of the BW process.  相似文献   

6.
This review addressed the fundamental principles, advantages and challenges of forward osmosis (FO) membrane processes. FO is receiving more and more research attractions because it can concurrently produce clean water with low energy input and generate hydraulic energy (pressure retarded osmosis). FO typically requires zero or low hydraulic driving pressure, therefore the fouling potential of the FO membranes is much lower than conventional pressure-driven membrane processes. However, concentration polarization (CP), especially the internal CP significantly reduces the effective osmotic pressure across the FO membrane, the major driving force for the filtration process. As a result, innovative FO membrane materials like electrospun nanofibers have been explored to make low tortuosity, high porosity, and thin FO membranes with a high rejection rate of solutes and low or zero diffusion of the draw solute. The orientation of the FO membrane with active layer-facing-feed solution has less fouling than active layer-facing-draw solution. In addition, to further decrease the fouling potential, a hydrophilic and more negatively charged membrane is preferred when filtration of natural organic matter (NOM) or alginate in the absence of multivalent cations.  相似文献   

7.
Membrane potential measurement has been widely used for the characterization of ionic membranes such as ion-exchange membranes without solvent permeability. However, there have been few studies on membrane potentials across pressure-driven processes such as reverse osmosis (RO) membranes with solvent permeability. In the present study, the membrane potential across RO membranes in NaCl and MgCl2 under the pressure gradient, DeltaP=0-0.3 MPa, was measured. The experimental results were analyzed by the theoretical model based on the Donnan equilibrium and the extended Nernst-Planck flux equation considering the pressure effect. The theoretical values agreed well with the experimental ones. This indicates that membrane potential is useful for characterizing the effective charge density of the active layer of RO membranes under pressure gradient.  相似文献   

8.
Harvesting salinity gradient energy, also known as “osmotic energy” or “blue energy”, generated from the free energy mixing of seawater and fresh river water provides a renewable and sustainable alternative for circumventing the recent upsurge in global energy consumption. The osmotic pressure resulting from mixing water streams with different salinities can be converted into electrical energy driven by a potential difference or ionic gradients. Reversed-electrodialysis (RED) has become more prominent among the conventional membrane-based separation methodologies due to its higher energy efficiency and lesser susceptibility to membrane fouling than pressure-retarded osmosis (PRO). However, the ion-exchange membranes used for RED systems often encounter limitations while adapting to a real-world system due to their limited pore sizes and internal resistance. The worldwide demand for clean energy production has reinvigorated the interest in salinity gradient energy conversion. In addition to the large energy conversion devices, the miniaturized devices used for powering a portable or wearable micro-device have attracted much attention. This review provides insights into developing miniaturized salinity gradient energy harvesting devices and recent advances in the membranes designed for optimized osmotic power extraction. Furthermore, we present various applications utilizing the salinity gradient energy conversion.  相似文献   

9.
We describe details of a solar driven pervaporation process for the production of desalinated water from highly contaminated waters. The membrane material is a polyetheramide-based polymer film of 40 μm thickness. This Solar Dew® membrane is used in a tubular configuration in a direct solar membrane pervaporation process. The feed waters used in this study are untreated seawater and waste water that is simultaneously produced with the mineral oil extraction. In all cases retention of typical ions as sodium, chloride and calcium as well as specific problematic ions (arsenic, boron and fluoride) was higher than data reported for pressure driven membrane processes like NF and RO. The condensate quality was well within WHO limits for drinking water. A reduction of almost five orders of magnitude in conductivity between brine and condensate could be realized, producing condensate with conductivities of 5 μS/cm or lower. Laboratory experiments show that the measured fluxes are independent of severe fouling and virtually independent of concentration up to 100 g/l total solids.  相似文献   

10.
Methanol diffusion in two polymer electrolyte membranes, Nafion 117 and BPSH 40 (a 40% disulfonated wholly aromatic polyarylene ether sulfone), was measured using a modified pulsed field gradient NMR method. This method allowed for the diffusion coefficient of methanol within the membrane to be determined while immersed in a methanol solution of known concentration. A second set of gradient pulses suppressed the signal from the solvent in solution, thus allowing the methanol within the membrane to be monitored unambiguously. Over a methanol concentration range of 0.5–8 M, methanol diffusion coefficients in Nafion 117 were found to increase from 2.9 × 10−6 to 4.0 × 10−6 cm2 s−1. For BPSH 40, the diffusion coefficient dropped significantly over the same concentration range, from 7.7 × 10−6 to 2.5 × 10−6cm2 s−1. The difference in diffusion behavior is largely related to the amount of solvent sorbed by the membranes. Increasing the methanol concentration results in an increase in solvent uptake for Nafion 117, while BPSH 40 actually excludes the solvent at higher concentrations. In contrast, diffusion of methanol measured via permeability measurements (assuming a partition coefficient of 1) was lower (1.3 × 10−6 and 6.4 × 10−7 cm2 s−1 for Nafion 117 and BPSH 40 respectively) and showed no concentration dependence. The differences observed between the two techniques are related to the length scale over which diffusion is monitored and the partition coefficient, or solubility, of methanol in the membranes as a function of concentration. For the permeability measurements, this length is equal to the thickness of the membrane (178 and 132 μm for Nafion 117 and BPSH 40 respectively) whereas the NMR method observes diffusion over a length of approximately 4–8 μm. Regardless of the measurement technique, BPSH 40 is a greater barrier to methanol permeability at high methanol concentrations.  相似文献   

11.
S. Murad 《Adsorption》1996,2(1):95-101
Computer simulation studies using the method of molecular dynamics have been carried out to investigate osmosis and reverse osmosis in solutions separated by semi-permeable membranes. The method has been used to study the dynamic approach to equilibrium in such systems from their initial nonequilibrium state. In addition density profiles of both the solute and solvent molecules have been investigated, especially near the walls for adsorption effects. Finally the diffusion coefficients and osmotic pressure have also been measured.Our results show both osmosis and reverse osmosis, as well as a smooth transition between the two when either the solution concentration is changed, or the density (pressure) difference between the solvent and solution compartments is varied. We believe this new method can be used to improve our understanding of these two important phenomena at the molecular level.  相似文献   

12.
Pressure retarded osmosis (PRO) was investigated as a viable source of renewable energy. In PRO, water from a low salinity feed solution permeates through a membrane into a pressurized, high salinity draw solution; power is obtained by depressurizing the permeate through a hydroturbine. A PRO model was developed to predict water flux and power density under specific experimental conditions. The model relies on experimental determination of the membrane water permeability coefficient (A), the membrane salt permeability coefficient (B), and the solute resistivity (K). A and B were determined under reverse osmosis conditions, while K was determined under forward osmosis (FO) conditions. The model was tested using experimental results from a bench-scale PRO system. Previous investigations of PRO were unable to verify model predictions due to the lack of suitable membranes and membrane modules. In this investigation, the use of a custom-made laboratory-scale membrane module enabled the collection of experimental PRO data. Results obtained with a flat-sheet cellulose triacetate (CTA) FO membrane and NaCl feed and draw solutions closely matched model predictions. Maximum power densities of 2.7 and 5.1 W/m2 were observed for 35 and 60 g/L NaCl draw solutions, respectively, at 970 kPa of hydraulic pressure. Power density was substantially reduced due to internal concentration polarization in the asymmetric CTA membranes and, to a lesser degree, to salt passage. External concentration polarization was found to exhibit a relatively small effect on reducing the osmotic pressure driving force. Using the predictive PRO model, optimal membrane characteristics and module configuration can be determined in order to design a system specifically tailored for PRO processes.  相似文献   

13.
受传统膜科学中分离膜的荷电化可提升膜盐水分离效能的启发,在前期工作基础上尝试以荷电化碳纳米管CNT(8,8)为水通道仿生构筑正渗透膜,利用分子动力学模拟的方法研究水分子在膜中的传递行为.模拟中,以0.5mo·lL-1氯化钠溶液模拟海水,1mo·lL-1的氯化镁溶液为汲取液,考察不同电量电荷修饰对碳纳米管正渗透膜中水分子密度分布、扩散系数以及水通量的影响.结果显示,电荷修饰对碳纳米管中水分子的密度分布和扩散速率以及水通量影响较显著,当碳纳米管管口荷电量为-0.3e时,碳纳米管膜可获得最大水通量.  相似文献   

14.
The objective of the study was to further develop a novel cleaning technique for reverse osmosis in reclamation of municipal secondary effluent. This technique is a new backwash method via direct osmosis (DO) by intermittent injection of the high salinity (HS) solution without stopping of high pressure pump and it is environment and membrane friendly technique. In the study, DO-HS trials were carried out with a UF-RO pilot system which was operated on site with the secondary treated effluent as the raw feed. Different operating conditions for DO-HS treatment in the actual process were investigated. It was found that the operation for implementation of the DO-HS cleaning technique developed was easy. For the first time, the actual profiles of HS concentration, DO backwash flow rate, brine flow rate and permeate pressure during DO-HS treatment have been demonstrated. It was observed that turbidity of the brine stream during DO-HS treatment at 3 NTU was 5 times higher than that before DO-HS treatment. The results from this study have confirmed the previous hypothesis with DO-HS treatment that there would be a strong driving force for DO backwash to lift and sweep the foulants from the membrane surface which would be carried over to the brine. The optimal plant operating conditions in terms of RO feed flow rate, HS concentration and HS injection time are ready for the DO-HS method to be adopted and validated in a long-term continuous plant operation.  相似文献   

15.
膜法苦咸水淡化过程中,符合环境保护要求的浓排水处理方法成本高昂,所以只有当回收率达到较高值时,在实际运行中才具有经济可行性。目前,在不加剧膜污染的条件下进一步提高苦咸水淡化系统回收率的方法已成为该领域研究热点。本文详细综述了高回收率膜法苦咸水淡化工艺的应用研究进展,包括基于反渗透、纳滤、正渗透、膜蒸馏、电渗析和电容去离子化淡化工艺过程,以及这些过程面临的热点问题,并对此提出了建议。  相似文献   

16.
This study focuses on the use of surface-coated reverse osmosis (RO) membranes to reduce membrane fouling in produced water purification. A series of crosslinked PEG-based hydrogels were synthesized using poly(ethylene glycol) diacrylate as the crosslinker and poly(ethylene glycol) acrylate, 2-hydroxyethyl acrylate, or acrylic acid as comonomers. The hydrogels were highly water permeable, with water permeabilities ranging from 10.0 to 17.8 (L μm)/(m2 h bar). The hydrogels were applied to a commercial RO membrane (AG brackish water RO membrane from GE Water and Process Technologies). The water flux of coated membranes and a series-resistance model were used to estimate coating thickness; the coatings were approximately 2 μm thick. NaCl rejection for both uncoated and coated membranes was 99.0% or greater, and coating the membranes appeared to increase salt rejection, in contrast to predictions from the series-resistance model. Zeta potential measurements showed a small reduction in the negative charge of coated membranes relative to uncoated RO membranes. Model oil/water emulsions were used to probe membrane fouling. Emulsions were prepared with either a cationic or an anionic surfactant. Surfactant charge played a significant role in membrane fouling even in the absence of oil. A cationic surfactant, dodecyltrimethyl ammonium bromide (DTAB), caused a strong decline in water flux while an anionic surfactant, sodium dodecyl sulfate (SDS), resulted in little or no flux decline. In the presence of DTAB, the AG RO membrane water flux immediately dropped to 30% of its initial value, but in the presence of SDS, its water flux gradually decreased to 74% of its initial value after 24 h. DTAB-fouled membranes had lower salt rejection than membranes not exposed to DTAB. In contrast, SDS-fouled membranes had higher salt rejection than membranes not exposed to SDS, with rejection values increasing, in some cases, from 99.0 to 99.8% or higher. In both surfactant tests, coated membranes exhibited less flux decline than uncoated AG RO membranes. Additionally, coated membranes experienced little fouling in the presence of an oil/water emulsion prepared from DTAB and n-decane. For example, after 24 h the water flux of the AG RO membrane fell to 26% of its initial value, while the water flux of a PEGDA-coated AG RO membrane was 73% of its initial value.  相似文献   

17.
New types of supported Pd membranes were developed for high temperature H2 separation. Sequential combinations of boehmite sol slip casting and film coating, and electroless plating (ELP) steps were designed to synthesize “Pd encapsulated” and “Pd nanopore” membranes supported on -Al2O3 hollow fibers. The permeation characteristics (flux, permselectivity) of a series of unaged and aged encapsulated and nanopore membranes with different Pd loadings were compared to those of a conventional 1 μm Pd/4 μm γ-Al2O3/-Al2O3 hollow fiber membrane. The unaged encapsulated membrane exhibited good performance with ideal H2/N2 separation factors of 3000–8000 and H2 flux 0.4 mol/m2 s at 370 °C and a transmembrane pressure gradient of 4 × 105 Pa. The unaged Pd nanopore membranes had a lower initial flux and permselectivity, but exhibited superior performance with extended use (200 h). At the same conditions the unaged 2.6 μm Pd nanopore membrane had a H2 flux of 0.16 mol/m2 s and separation factor of 500 and the unaged 0.6 μm Pd nanopore membrane had a H2 flux of 0.25 mol/m2 s and separation factor of 50. Both nanopore membranes stabilized after 40 h of operation, in contrast to a continued deterioration of the permselectivity for the other membranes. An analysis of the permeation data reveals a combination of Knudsen and convective transport through membrane defects. A phenomenological, qualitative model of the synthesis and resulting structure of the encapsulated and nanopore membranes is presented to explain the permeation results.  相似文献   

18.
The design of various multistage RO systems under different feed concentration and product specification is presented in this work. An optimization method using the process synthesis approach to design an RO system has been developed. First, a simplified superstructure that contains all the feasible design in present desalination process has been presented. It offers extensive flexibility towards optimizing various types of RO system and thus may be used for the selection of the optimal structural and operating schemes. A pressure vessel model that takes into account the pressure drop and concentration changes in the membrane channel has also been given to simulate multi-element performance in the pressure vessel. Then the cost equation relating the capital and operating cost to the design variables, as well as the structural variables of the designed system have been introduced in the objective function. Finally the optimum design problem can be formulated as a mixed-integer nonlinear programming (MINLP) problem, which minimizes the total annualized cost. The solution to the problem includes optimal arrangement of the RO modules, pumps, energy recovery devices, the optimal operating conditions, and the optimal selection of types and number of membrane elements. The effectiveness of this design methodology has been demonstrated by solving several seawater desalination cases. Some of the trends of the optimum RO system design have been presented.  相似文献   

19.
The aim of this work was to develop a simple and accurate model for predicting the concentration polarization index in the nanofiltration (NF)/reverse osmosis (RO) of dilute multi-ionic solutions. On the grounds of this model, the total flux of the ion i at the feed-solution/membrane interface consists of the sum of the diffusion, convection and migration fluxes, the former of which is determined by conventional mass-transfer correlations duly corrected to take into account the permeation through the membrane (suction effect). The coupling of the ionic fluxes is enforced by the electroneutrality requirement at the feed-solution/membrane interface. The model developed dispenses with the arbitrary assumption of the thickness of a film layer in the vicinity of the membrane surface.

Assessing the accuracy/validity of this model with multi-ionic solutions would be rather harsh, thus the model accuracy and ranges of validity were ascertained for a benchmark case: NF/RO of single salt solutions. The model predicts approximate concentration polarization indexes of the salts A+B, A+2B2− and A+3B3− (or A2B2 and A3+B3) with positive deviations lower than 10% with respect to the benchmark concentration polarization index, for ions diffusivities ratios, D1/D2 (or D2/D1), in the range 0.16–5.5 and Jv/kc<3, where Jv is the permeation flux and kc is the mass-transfer coefficient of the salt for vanishing mass-transfer rates at impermeable walls. The main assumption of the model – the individual mass-transfer coefficients of the ions are independent of each other – appears to hold in a broad range of conditions, for single salt solutions.

The model developed was expeditely applied to predict the concentration polarization in the nanofiltration of solutions containing Na+, Cl and a dye3− (experimental data of Bowen and Mohammad [AIChE J. 44 (8) (1998) 1799–1812]), and its predictions are in fair agreement with the predictions of the extended Nernst–Planck equations in the film layer of the “slowest” ion.  相似文献   


20.
A novel thin-film composite (TFC) seawater reverse osmosis membrane was developed by the interfacial polymerization of 5-chloroformyloxyisophthaloyl chloride (CFIC) and metaphenylenediamine (MPD) on the polysulphone supporting membrane. The performance of the TFC membrane was optimized by studying the preparation parameters, which included the reaction time, pH of the aqueous-MPD solution, monomer CFIC concentration, additive isopropyl alcohol content in aqueous solution, curing temperature and time. The reverse osmosis performance of the resulting membrane was evaluated through permeation experiment with synthetic seawater, and the structure of the novel membrane was characterized by using SEM, AFM and XPS. Furthermore, the separation properties of the TFC membrane were tested by examining the reverse osmosis performances of various conditions, the boron rejection performance and the long-term stability. The results show that the desired TFC seawater reverse osmosis membrane has a typical salt rejection of 99.4% and a flux of about 35 L/m2 h for a feed aqueous solution containing 3.5 wt.% NaCl at 5.5 MPa, and an attractive boron rejection of more than 92% at natural pH of 7–8; that the novel seawater reverse osmosis membrane appears to comprise a thicker, smoother and less cross-linking film structure. Additionally, the TFC membrane exhibits good long-term stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号