首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang H  Sun Z  Xie Y  King RB  Schaefer HF 《Inorganic chemistry》2011,50(19):9256-9265
The trinuclear derivative Fe(3)(C(8)H(8))(3) was synthesized in 2009 by Lavallo and Grubbs via the reaction of Fe(C(8)H(8))(2) with a bulky heterocyclic carbene. This fascinating structure is the first example of a derivative of the well-known Fe(3)(CO)(12) in which all 12 carbonyl groups have been replaced by hydrocarbon ligands. The density functional theory predicts a structure having a central Fe(3) equilateral triangle with ~2.9 ? Fe-Fe single bonded edges bridged by η(5),η(3)-C(8)H(8) ligands. This structure is close to the experimental structure, determined by X-ray crystallography. The related hypoelectronic M(3)(C(8)H(8))(3) derivatives (M = Cr, V, Ti) are predicted to have central scalene M(3) triangles with edge lengths and Wiberg bond indices (WBIs) corresponding to one formal single M-M bond, one formal double M═M bond, and one formal triple M≡M bond. For Mn(3)(C(8)H(8))(3), both a doublet structure with one Mn═Mn double bond and two Mn-Mn single bonds in the Mn(3) triangle, and a quartet structure with two Mn═Mn double bonds and one Mn-Mn single bond are predicted. The hyperelectronic derivatives M(3)(C(8)H(8))(3) have weaker direct M-M interactions in their M(3) triangles, as indicated by both the M-M distances and the WBIs. Thus, Ni(3)(C(8)H(8))(3) has bis(trihapto) η(3),η(3)-C(8)H(8) ligands bridging the edges of a central approximately equilateral Ni(3) triangle with long Ni···Ni distances of ~3.7 ?. The WBIs indicate very little direct Ni-Ni bonding in this Ni(3) triangle and thus a local nickel environment in the singlet Ni(3)(C(8)H(8))(3) similar to that observed for diallylnickel (η(3)-C(3)H(5))(2)Ni.  相似文献   

2.
The novel cationic diiron μ-allenyl complexes [Fe(2)Cp(2)(CO)(2)(μ-CO){μ-η(1):η(2)(α,β)-C(α)(H)=C(β)=C(γ)(R)(2)}](+) (R = Me, 4a; R = Ph, 4b) have been obtained in good yields by a two-step reaction starting from [Fe(2)Cp(2)(CO)(4)]. The solid state structures of [4a][CF(3)SO(3)] and of the diruthenium analogues [Ru(2)Cp(2)(CO)(2)(μ-CO){μ-η(1):η(2)(α,β)-C(α)(H)=C(β)=C(γ)(R)(2)}][BPh(4)] (R = Me, [2a][BPh(4)]; R = Ph, [2c][BPh(4)]) have been ascertained by X-ray diffraction studies. The reactions of 2c and 4a with Br?nsted bases result in formation of the μ-allenylidene compound [Ru(2)Cp(2)(CO)(2)(μ-CO){μ-η(1):η(1)-C(α)=C(β)=C(γ)(Ph)(2)}] (5) and of the dimetallacyclopentenone [Fe(2)Cp(2)(CO)(μ-CO){μ-η(1):η(3)-C(α)(H)=C(β)(C(γ)(Me)CH(2))C(=O)}] (6), respectively. The nitrile adducts [Ru(2)Cp(2)(CO)(NCMe)(μ-CO){μ-η(1):η(2)-C(α)(H)=C(β)=C(γ)(R)(2)}](+) (R = Me, 7a; R = Ph, 7b), prepared by treatment of 2a,c with MeCN/Me(3)NO, react with N(2)CHCO(2)Et/NEt(3) at room temperature, affording the butenolide-substituted carbene complexes [Ru(2)Cp(2)(CO)(μ-CO){μ-η(1):η(3)-C(α)(H)[upper bond 1 start]C(β)C(γ)(R)(2)OC(=O)C[upper bond 1 end](H)] (R = Me, 10a; R = Ph, 10b). The intermediate cationic compound [Ru(2)Cp(2)(CO)(μ-CO){μ-η(1):η(3)-C(α)(H)[upper bond 1 start]C(β)C(γ)(Me)(2)OC(OEt)C[upper bond 1 end](H)](+) (9) has been detected in the course of the reaction leading to 10a. The addition of N(2)CHCO(2)Et/NHEt(2) to 7a gives the 2-furaniminium-carbene [Ru(2)Cp(2)(CO)(μ-CO){μ-η(1):η(3)-C(α)(H)[upper bond 1 start]C(β)C(γ)(Me)(2)OC(OEt)C[upper bond 1 end](H)](+) (11). The X-ray structures of 10a, 10b and [11][BF(4)] have been determined. The reactions of 4a,b with MeCN/Me(3)NO result in prevalent decomposition to mononuclear iron species.  相似文献   

3.
Compounds of the type M(2)Bz(3) (Bz = benzene, C(6)H(6)) have been of interest since the related triple-decker mesitylenechromium sandwich (1,3,5-Me(3)C(6)H(3))(3)Cr(2) has been synthesized and characterized structurally by X-ray crystallography. Theoretical studies predict the lowest-energy M(2)Bz(3) structures of the early transition metals Ti, V, and Cr to be the triple-decker sandwiches trans-Bz(2)M(2)(η(6),η(6)-μ-C(6)H(6)) having quintet, triplet, and singlet spin states, respectively. In these structures, the central benzene ring functions as a hexahapto ligand to each metal atom. The singlet rice-ball cis-Bz(2)M(2)(μ-C(6)H(6)) structures with a 2.64-? Mn═Mn double bond or a 2.81-? Fe-Fe single bond are preferred for the central transition metals Mn and Fe. Singlet triple-decker-sandwich structures trans-Bz(2)M(2)(μ-C(6)H(6)) return as the lowest-energy structures for the late transition metals Co and Ni but with the central benzene ring only partially bonded to each metal atom. Thus, the lowest-energy cobalt derivative has a trans-Bz(2)Co(2)(η(3),η(3)-μ-C(6)H(6)) structure in which the central benzene ring acts as a trihapto ligand to each metal atom. Similarly, the lowest-energy nickel derivative has a trans-Bz(2)Ni(2)(η(2),η(2)-μ-C(6)H(6)) structure in which the central benzene ring acts as a dihapto ligand to each metal atom, leaving an uncomplexed C═C double bond. The metal-metal bond orders in the singlet "rice-ball" structures cis-Bz(2)M(2)(μ-C(6)H(6)) (M = Mn, Fe) and the hapticities of the central benzene rings in the singlet late-transition-metal triple-decker-sandwich structures trans-Bz(2)M(2)(μ-C(6)H(6)) (M = Co, Ni) are governed by the desirability for the metal atoms to attain the favored 18-electron configuration.  相似文献   

4.
Gong X  Li QS  Xie Y  King RB  Schaefer HF 《Inorganic chemistry》2010,49(23):10820-10832
Recently the first boronyl (oxoboryl) complex [(c-C(6)H(11))(3)P](2)Pt(BO)Br was synthesized. The boronyl ligand in this complex is a member of the isoelectronic series BO(-) → CO → NO(+). The cobalt carbonyl boronyls Co(BO)(CO)(4) and Co(2)(BO)(2)(CO)(7), with cobalt in the formal d(8) +1 oxidation state, are thus isoelectronic with the familiar homoleptic iron carbonyls Fe(CO)(5) and Fe(2)(CO)(9). Density functional theory predicts Co(BO)(CO)(4) to have a trigonal bipyramidal structure with the BO group in an axial position. The tricarbonyl Co(BO)(CO)(3) is predicted to have a distorted square planar structure, similar to those of other 16-electron complexes of d(8) transition metals. Higher energy Co(BO)(CO)(n) (n = 3, 2) structures may be derived by removal of one (for n = 3) or two (for n = 2) CO groups from a trigonal bipyramidal Co(BO)(CO)(4) structure. Structures with a CO group bridging 17-electron Co(CO)(4) and Co(BO)(2)(CO)(3) units and no Co-Co bond are found for Co(2)(BO)(2)(CO)(8). However, Co(2)(BO)(2)(CO)(8) is not viable because of the predicted exothermic loss of CO to give Co(2)(BO)(2)(CO)(7). The lowest lying Co(2)(BO)(2)(CO)(7) structure is a triply bridged (2BO + CO) structure closely related to the experimental Fe(2)(CO)(9) structure. However, other relatively low energy Co(2)(BO)(2)(CO)(7) structures are found, either with a single CO bridge, similar to the experimental Os(2)(CO)(8)(μ-CO) structure; or with 17-electron Co(CO)(4) and Co(BO)(2)(CO)(3) units joined by a single Co-Co bond with or without semibridging carbonyl groups. Both triplet and singlet Co(2)(BO)(2)(CO)(6) structures are found. The lowest lying triplet Co(2)(BO)(2)(CO)(6) structures have a Co(CO)(3)(BO)(2) unit coordinated to a Co(CO)(3) unit through the oxygen atoms of the boronyl groups with a non-bonding ~4.3 ? Co···Co distance. The lowest lying singlet Co(2)(BO)(2)(CO)(6) structures have either two three-electron donor bridging η(2)-μ-BO groups and no Co···Co bond or one such three-electron donor BO group and a formal Co-Co single bond.  相似文献   

5.
The unsaturated homoleptic manganese carbonyls Mn(2)(CO)(n)() (n = 7, 8, 9) are characterized by their equilibrium geometries, thermochemistry, and vibrational frequencies using methods from density functional theory (DFT). The computed metal-metal distances for global minima range from 3.01 A for the unbridged Mn(2)(CO)(10) with a Mn-Mn single bond to 2.14 A for a monobridged Mn(2)(CO)(7) formulated with a metal-metal quadruple bond. The global minimum for Mn(2)(CO)(9) has a four-electron bridging mu-eta(2)-CO group and a 2.96 A Mn-Mn distance suggestive of the single bond required for 18-electron configurations for both metal atoms. This structure is closely related to an experimentally realized structure for the isolated and structurally characterized stable phosphine complex [R(2)PCH(2)PR(2)](2)Mn(2)(CO)(4)(mu-eta(2)-CO). An unbridged (OC)(4)Mn-Mn(CO)(5) structure for Mn(2)(CO)(9) has only slightly (<6 kcal/mol) higher energy with a somewhat shorter metal-metal distance of 2.77 A. For Mn(2)(CO)(8) the lowest energy structure is a D(2)(d)() unbridged structure with a 2.36 A metal-metal distance suggesting the triple bond required for the favored 18-electron configuration for both metal atoms. However, the unbridged unsymmetrical (CO)(3)Mn-Mn(CO)(5) structure with a metal-metal bond distance of 2.40 A lies only 1 to 3 kcal/mol above this global minimum. The lowest energy structure of Mn(2)(CO)(7) is an unbridged C(s)() structure with a short metal-metal distance of 2.26 A. This is followed energetically by another C(s)() unbridged Mn(2)(CO)(7) structure with a somewhat longer metal-metal distance of 2.38 A.  相似文献   

6.
The reaction of μ-alkyne-bridged dimolybdenum compound [Mo2(μ-C2HPh)(CO)4(η5-C5H4C(O)Me)2] 1 with Co2(CO)8 in refluxing toluene gave a new butterfly compound [Co2Mo2(μ4-C2HPh)(μ-CO)4(CO)4(η5-C5H4C(O)Me)2] 2 which was fully characterized by elemental analysis, IR, 1H NMR and X-ray single crystal diffraction techniques. 2 crystallized in monoclinic system, C30H20Co2Mo2O10, Mr=850.23, space group P21/a(#14), a=14.165(5), b=12.498(2), c=16.204(2)(A), β = 96.50(2)°, V = 2850(1)(A)3, Z = 4, Dc = 1.981 g cm-3, F(000)=1672, μ(MoKα)=20.41 cm-1, final R=0.030, Rw=0.039 for 4831 observable reflections with I>2σ(I). The structure contains a Co2Mo2 butterfly core, and each Mo-Co bond is spanned by an asymmetric semi-bridging carbonyl ligand.  相似文献   

7.
The binuclear molybdenum carbonyls Mo(2)(CO)(n) (n = 11, 10, 9, 8) have been studied by density functional theory using the BP86 and MPW1PW91 functionals. The lowest energy Mo(2)(CO)(11) structure is a singly bridged singlet structure with a Mo-Mo single bond. This structure is essentially thermoneutral toward dissociation into Mo(CO)(6) + Mo(CO)(5), suggesting limited viability similar to the analogous Cr(2)(CO)(11). The lowest energy Mo(2)(CO)(10) structure is a doubly semibridged singlet structure with a Mo═Mo double bond. This structure is essentially thermoneutral toward disproportionation into Mo(2)(CO)(11) + Mo(2)(CO)(9), suggesting limited viability. The lowest energy Mo(2)(CO)(9) structure has three semibridging CO groups and a Mo≡Mo triple bond analogous to the lowest energy Cr(2)(CO)(9) structure. This structure appears to be viable toward CO dissociation, disproportionation into Mo(2)(CO)(10) + Mo(2)(CO)(8), and fragmentation into Mo(CO)(5) + Mo(CO)(4) and thus appears to be a possible synthetic objective. The lowest energy Mo(2)(CO)(8) structure has one semibridging CO group and a Mo≡Mo triple bond similar to that in the lowest energy Mo(2)(CO)(9) structure. This differs from the lowest energy Cr(2)(CO)(8) structure, which is a triply bridged structure. A higher energy unbridged D(2d) Mo(2)(CO)(8) structure was found with a very short Mo-Mo distance of 2.6 ?. This interesting structure has two degenerate imaginary vibrational frequencies. Following the corresponding normal modes leads to a Mo(2)(CO)(8) structure, lying ~5 kcal/mol above the global minimum, with two four-electron donor bridging CO groups and a Mo═Mo distance suggesting a formal double bond. All of the triplet Mo(2)(CO)(n) (n = 10, 9, 8) structures were found to be relatively high energy structures, lying at least 22 kcal/mol above the corresponding global minimum. The singlet-triplet splittings for the Mo(2)(CO)(n) (n = 10, 9, 8) structures are significantly higher than those of the Cr(2)(CO)(n) analogues. The Mo-Mo Wiberg bond indices confirm our assigned bond orders based on predicted bond distances.  相似文献   

8.
To determine structure-optical property relationships in asymmetric platinum acetylide complexes, we synthesized the compounds trans-Pt(PBu3)2(C[triple bond]CC6H5)(C[triple bond]C-C6H4-C[triple bond]CC6H5) (PE1-2), trans-Pt(PBu3)2(C[triple bond]CC6H5)(C[triple bond]C-C6H4-C[triple bond]C-C6H4-C[triple bond]CC6H5) (PE1-3) and trans-Pt(PBu3)2(C[triple bond]C-C6H4-C[triple bond]CC6H5)(C[triple bond]C-C6H4-C[triple bond]C-C6H4-C[triple bond]CC6H5) (PE2-3) that have different ligands on either side of the platinum and compared their spectroscopic properties to the symmetrical compounds PE1, PE2 and PE3. We measured ground state absorption, fluorescence, phosphorescence and triplet state absorption spectra and performed density functional theory (DFT) calculations of frontier orbitals, lowest lying singlet states, triplet state geometries and energies. The absorption and emission spectra give evidence the singlet exciton is delocalized across the central platinum atom. The phosphorescence from the asymmetric complexes comes from the largest ligand. Time-dependent (TD) DFT calculations show the S1 state has mostly highest occupied molecular orbital (HOMO) --> lowest unoccupied molecular orbital (LUMO) character, with the LUMO delocalized over the chromophore. In the asymmetric chromophores, the LUMO resides on the larger ligand, suggesting the S1 state has interligand charge transfer character. The triplet state geometries obtained from the DFT calculations show distortion on the lowest energy ligand, whereas the other ligand has the ground state geometry. The calculated trend in the triplet state energies agrees very well with the experimental trend. Calculations of triplet state spin density also show the triplet exciton is confined to one ligand. In the asymmetric complexes the spin density is confined to the largest ligand. The results show Kasha's rule applies to these complexes, where the triplet exciton moves to the lowest energy ligand.  相似文献   

9.
Reactions of N-heterocyclic carbene stabilized dichlorosilylene IPr·SiCl(2) (1) (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) with (η(5)-C(5)H(5))V(CO)(4), (η(5)-C(5)H(5))Co(CO)(2), and Fe(2)(CO)(9) afford dichlorosilylene complexes IPr·SiCl(2)·V(CO)(3)(η(5)-C(5)H(5)) (2), IPr·SiCl(2)·Co(CO)(η(5)-C(5)H(5)) (3), and IPr·SiCl(2)·Fe(CO)(4) (4), respectively. Complexes 2-4 are stable under an inert atmosphere, are soluble in common organic solvents, and have been characterized by elemental analysis and multinuclear ((1)H, (13)C, and (29)Si) NMR spectroscopy. Molecular structures of 2-4 have been determined by single crystal X-ray crystallographic studies and refined with nonspherical scattering factors.  相似文献   

10.
The hybrid dibismuthines O(CH(2)CH(2)BiPh(2))(2) and MeN(CH(2)-2-C(6)H(4)BiPh(2))(2) react with [M(CO)(5)(thf)] (M = Cr or W) to form [{M(CO)(5)}(2){O(CH(2)CH(2)BiPh(2))(2)}] and [{Cr(CO)(5)}(2){MeN(CH(2)-2-C(6)H(4)BiPh(2))(2)}] containing bridging bidentate (Bi(2)) coordination. The unsymmetrical tertiary bismuthine complexes [M(CO)(5){BiPh(2)(o-C(6)H(4)OMe)}] are also described. Depending upon the molar ratio, the hybrid distibines O(CH(2)CH(2)SbMe(2))(2) and MeN(CH(2)-2-C(6)H(4)SbMe(2))(2) react with [M(CO)(5)(thf)] to give the pentacarbonyl complexes [{M(CO)(5)}(2){O(CH(2)CH(2)SbMe(2))(2)}] and [{Cr(CO)(5)}(2){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] or tetracarbonyls cis-[M(CO)(4){O(CH(2)CH(2)SbMe(2))(2)}] and cis-[M(CO)(4){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}]. The latter can also be obtained from [Cr(CO)(4)(nbd)] or [W(CO)(4)(pip)(2)], and contain chelating bidentates (Sb(2)-coordinated) as determined crystallographically. S(CH(2)-2-C(6)H(4)SbMe(2))(2) coordinates as a tridentate (SSb(2)) in fac-[M(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}] (M = Cr or Mo) and fac-[Mn(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)]. Fac-[Mn(CO)(3){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)] contains NSb(2)-coordinated ligand in the solid state, but in solution a second species, Sb(2)-coordinated and with a κ(1)-CF(3)SO(3) replacing the coordinated amine is also evident. X-ray crystal structures were also determined for fac-[Cr(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}], fac-[Mn(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)] and fac-[Mn(CO)(3){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] [CF(3)SO(3)]. Hypervalent N···Sb interactions are present in cis-[M(CO)(4){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] (M = Mo or W), but absent for M = Cr.  相似文献   

11.
The reaction of [Mn(CN)L'(NO)(eta(5)-C(5)R(4)Me)] with cis- or trans-[MnBrL(CO)(2)(dppm)], in the presence of Tl[PF(6)], gives homobinuclear cyanomanganese(i) complexes cis- or trans-[(dppm)(CO)(2)LMn(micro-NC)MnL'(NO)(eta(5)-C(5)R(4)Me)](+), linkage isomers of which, cis- or trans-[(dppm)(CO)(2)LMn(micro-CN)MnL'(NO)(eta(5)-C(5)R(4)Me)](+), are synthesised by reacting cis- or trans-[Mn(CN)L(CO)(2)(dppm)] with [MnIL'(NO)(eta(5)-C(5)R(4)Me)] in the presence of Tl[PF(6)]. X-Ray structural studies on the isomers trans-[(dppm)(CO)(2){(EtO)(3)P}Mn(micro-NC)Mn(CNBu(t))(NO)(eta(5)-C(5)H(4)Me)](+) and trans-[(dppm)(CO)(2){(EtO)(3)P}Mn(micro-CN)Mn(CNBu(t))(NO)(eta(5)-C(5)H(4)Me)](+) show nearly identical molecular structures whereas cis-[(dppm)(CO)(2){(PhO)(3)P}Mn(micro-NC)Mn{P(OPh)(3)}(NO)(eta(5)-C(5)H(4)Me)](+) and cis-[(dppm)(CO)(2){(PhO)(3)P}Mn(micro-CN)Mn{P(OPh)(3)}(NO)(eta(5)-C(5)H(4)Me)](+) differ, effectively in the N- and C-coordination respectively of two different optical isomers of the pseudo-tetrahedral units (NC)Mn{P(OPh)(3)}(NO)(eta(5)-C(5)H(4)Me) and (CN)Mn{P(OPh)(3)}(NO)(eta(5)-C(5)H(4)Me) to the octahedral manganese centre. Electrochemical and spectroscopic studies on [(dppm)(CO)(2)LMn(micro-XY)MnL'(NO)(eta(5)-C(5)R(4)Me)](+) show that systematic variation of the ligands L and L', of the cyclopentadienyl ring substituents R, and of the micro-CN orientation (XY = CN or NC) allows control of the order of oxidation of the two metal centres and hence the direction and energy of metal-metal charge-transfer (MMCT) through the cyanide bridge in the mixed-valence dications. Chemical one-electron oxidation of cis- or trans-[(dppm)(CO)(2)LMn(micro-NC)MnL'(NO)(eta(5)-C(5)R(4)Me)](+) with [NO][PF(6)] gives the mixed-valence dications trans-[(dppm)(CO)(2)LMn(II)(micro-NC)Mn(I)L'(NO)(eta(5)-C(5)R(4)Me)](2+) which show solvatochromic absorptions in the electronic spectrum, assigned to optically induced Mn(I)-to-Mn(II) electron transfer via the cyanide bridge.  相似文献   

12.
Four new uranium-ruthenium complexes, [(Tren(TMS))URu(η(5)-C(5)H(5))(CO)(2)] (9), [(Tren(DMSB))URu(η(5)-C(5)H(5))(CO)(2)] (10), [(Ts(Tolyl))(THF)URu(η(5)-C(5)H(5))(CO)(2)] (11), and [(Ts(Xylyl))(THF)URu(η(5)-C(5)H(5))(CO)(2)] (12) [Tren(TMS)=N(CH(2)CH(2)NSiMe(3))(3); Tren(DMSB)=N(CH(2)CH(2)NSiMe(2)tBu)(3)]; Ts(Tolyl)=HC(SiMe(2)NC(6)H(4)-4-Me)(3); Ts(Xylyl)=HC(SiMe(2)NC(6)H(3)-3,5-Me(2))(3)], were prepared by a salt-elimination strategy. Structural, spectroscopic, and computational analyses of 9-12 shows: i) the formation of unsupported uranium-ruthenium bonds with no isocarbonyl linkages in the solid state; ii) ruthenium-carbonyl backbonding in the [Ru(η(5)-C(5)H(5))(CO)(2)](-) ions that is tempered by polarization of charge within the ruthenium fragments towards uranium; iii) closed-shell uranium-ruthenium interactions that can be classified as predominantly ionic with little covalent character. Comparison of the calculated U-Ru bond interaction energies (BIEs) of 9-12 with the BIE of [(η(5)-C(5)H(5))(3)URu(η(5)-C(5)H(5))(CO)(2)], for which an experimentally determined U-Ru bond disruption enthalpy (BDE) has been reported, suggests BDEs of approximately 150 kJ mol(-1) for 9-12.  相似文献   

13.
1 INTRODUCTION Constructing higher nuclearity clusters with well-defined dimensions and structures provide a rather active field of chemistry with potential applications in areas including nanotechnology, molecular recognition and catalysis[1~4]. A continuing effort has been directed toward developing a better methodology for systematic synthesis of supracluster compounds through molecular design [5,6]. On the basis of extensive investigation on the metal exchange reaction in cluster com…  相似文献   

14.
Rhenium carbonyl hydride chemistry dates back to the 1959 synthesis of HRe(CO)? by Hieber and Braun. The binuclear H?Re?(CO)? was subsequently synthesized as a stable compound with a central Re?(μ-H)? unit analogous to the B?(μ-H)? unit in diborane. The complete series of HRe(CO)(n) (n = 5, 4, 3) and H?Re?(CO)(n) (n = 9, 8, 7, 6) derivatives have now been investigated by density functional theory. In contrast to the corresponding manganese derivatives, all of the triplet rhenium structures are found to lie at relatively high energies compared with the corresponding singlet structures consistent with the higher ligand field splitting of rhenium relative to manganese. The lowest energy HRe(CO)? structure is the expected octahedral structure. Low-energy structures for HRe(CO)(n) (n = 4, 3) are singlet structures derived from the octahedral HRe(CO)? structure by removal of one or two carbonyl groups. For H?Re?(CO)? a structure HRe?(CO)?(μ-H), with one terminal and one bridging hydrogen atom, lies within 3 kcal/mol of the structure Re?(CO)?(η2-H?), similar to that of Re?(CO)??. For H?Re?(CO)(n) (n = 8, 7, 6) the only low-energy structures are doubly bridged singlet Re?(μ-H)?(CO)(n) structures. Higher energy dihydrogen complex structures are also found.  相似文献   

15.
研究了双核金属多重键配合物Cp2MM'(μ-C8H8)(MM'=ScMn,TiCr,ScCo,TiFe,VMn,VV,CrCr)的结构和成键模式.计算结果表明,对于28价电子体系,Cp2V2(μ-C8H8)基态为含V-V三重键的三态构型,其等电子体Cp2TiCr(μ-C8H8)为Ti-Cr四重键的单态,等电子体Cp2ScMn(μ-C8H8)为Sc-Mn三重键的单态.对于30价电子体系,Cp2Cr2(μ-C8H8)基态为含Cr-Cr三重键的单态,等电子体Cp2VMn(μ-C8H8)为含V-Mn单键的三态,等电子体Cp2ScCo(μ-C8H8)和Cp2TiFe(μ-C8H8)为含Sc-Co和Ti-Fe双键的单态.在三态Cp2MM'(μ-C8H8)中,两个金属原子多为17电子构型,而单态结构中两种金属原子多分别为16和18电子构型.  相似文献   

16.
[(η(6)-C(10)H(14))RuCl(μ-Cl)](2) (η(6)-C(10)H(14) = η(6)-p-cymene) was subjected to a bridge-splitting reaction with N,N',N'-triarylguanidines, (ArNH)(2)C═NAr, in toluene at ambient temperature to afford [(η(6)-C(10)H(14))RuCl{κ(2)(N,N')((ArN)(2)C-N(H)Ar)}] (Ar = C(6)H(4)Me-4 (1), C(6)H(4)(OMe)-2 (2), C(6)H(4)Me-2 (3), and C(6)H(3)Me(2)-2,4 (4)) in high yield with a view aimed at understanding the influence of substituent(s) on the aryl rings of the guanidine upon the solid-state structure, solution behavior, and reactivity pattern of the products. Complexes 1-3 upon reaction with NaN(3) in ethanol at ambient temperature afforded [(η(6)-C(10)H(14))RuN(3){κ(2)(N,N')((ArN)(2)C-N(H)Ar)}] (Ar = C(6)H(4)Me-4 (5), C(6)H(4)(OMe)-2 (6), and C(6)H(4)Me-2 (7)) in high yield. [3 + 2] cycloaddition reaction of 5-7 with RO(O)C-C≡C-C(O)OR (R = Et (DEAD) and Me (DMAD)) (diethylacetylenedicarboxylate, DEAD; dimethylacetylenedicarboxylate, DMAD) in CH(2)Cl(2) at ambient temperature afforded [(η(6)-C(10)H(14))Ru{N(3)C(2)(C(O)OR)(2)}{κ(2)(N,N')((ArN)(2)C-N(H)Ar)}]·xH(2)O (x = 1, R = Et, Ar = C(6)H(4)Me-4 (8·H(2)O); x = 0, R = Me, Ar = C(6)H(4)(OMe)-2 (9), and C(6)H(4)Me-2 (10)) in moderate yield. The molecular structures of 1-6, 8·H(2)O, and 10 were determined by single crystal X-ray diffraction data. The ruthenium atom in the aforementioned complexes revealed pseudo octahedral "three legged piano stool" geometry. The guanidinate ligand in 2, 3, and 6 revealed syn-syn conformation and that in 4, and 10 revealed syn-anti conformation, and the conformational difference was rationalized on the basis of subtle differences in the stereochemistry of the coordinated nitrogen atoms caused by the aryl moiety in 3 and 4 or steric overload caused by the substituents around the ruthenium atom in 10. The bonding pattern of the CN(3) unit of the guanidinate ligand in the new complexes was explained by invoking n-π conjugation involving the interaction of the NHAr/N(coord)Ar lone pair with C═Nπ* orbital of the imine unit. Complexes 1, 2, 5, 6, 8·H(2)O, and 9 were shown to exist as a single isomer in solution as revealed by NMR data, and this was ascribed to a fast C-N(H)Ar bond rotation caused by a less bulky aryl moiety in these complexes. In contrast, 3 and 10 were shown to exist as a mixture of three and five isomers in about 1:1:1 and 1·0:1·2:2·7:3·5:6·9 ratios, respectively in solution as revealed by a VT (1)H NMR, (1)H-(1)H COSY in conjunction with DEPT-90 (13)C NMR data measured at 233 K in the case of 3. The multiple number of isomers in solution was ascribed to the restricted C-N(H)(o-tolyl) bond rotation caused by the bulky o-tolyl substituent in 3 or the aforementioned restricted C-NH(o-tolyl) bond rotation as well as the restricted ruthenium-arene(centroid) bond rotation caused by the substituents around the ruthenium atom in 10.  相似文献   

17.
The N-heterocyclic stannylenes (NHSns), [(Dipp) N(CH(2))(n)N(Dipp)S n] (Dipp = 2,6- (i)Pr(2)C(6)H(3); n = 2, 1; n = 3, 5) and [((t)Bu) N(CHMe)(2)N((t)Bu)S n] (10) are competent ligands toward a variety of transition metal centers, as seen in the complexes [W(CO)(5)·1] (2), [(OC)(4)Fe(μ-1)(2)Fe(CO)(4)] (3), [(OC)(4)Fe(μ-1)Fe(CO)(4)] (4), [Fe(CO)(4)·5](n) (6, n = 1 or 2), [(OC)(4)Fe(μ-5)Fe(CO)(4)] (7), [Ph(3)PPt(μ-1)(2)PtPPh(3)] (8), [Fe(CO)(4)·10] (11), and [(η(5)-C(5)H(5))(OC)(2)Mn·10] (12). X-ray crystallographic studies show that the NHSns are structurally largely unperturbed binding to the metal, but in contrast to the parent NHCs, NHSns often adopt a bridging position across dinuclear metal units. The balance between terminal and bridging positions for the stannylene is evidently closely balanced as shown by the observation of both monomers and dimers for 6 in the solid state and in solution. (119)Sn and (57)Fe Mo?ssbauer spectroscopy of the complexes shows the tin atoms in such complexes to be consistent with electron deficient Sn(II) centers.  相似文献   

18.
The mononuclear Mn(CO)(5)X and binuclear Mn(2)(CO)(8)(μ-X)(2) manganese carbonyl halides have long been known for the halogens Cl, Br, and I. However, the corresponding manganese carbonyl fluorides (X = F) remain unknown. The structures and thermochemistry of such manganese carbonyl fluorides and their decarbonylation products have now been investigated using density functional theory. In all cases singlet structures were found to have lower energies than the corresponding triplet structures. The expected octahedral structure is predicted for Mn(CO)(5)F. Decarbonylation of Mn(CO)(5)F is predicted to give trigonal bipyramidal Mn(CO)(4)F with equatorial fluorine. Further, decarbonylation gives tetrahedral Mn(CO)(3)F. All of the binuclear Mn(2)(CO)(n)F(2) structures (n = 8, 7, 6) are predicted to have a central Mn(2)F(2) unit with two bridging F atoms, a non-bonding Mn···Mn distance of ~3.1 ?, and exclusively terminal CO groups. The thermochemistry of these manganese carbonyl fluorides indicates that they are viable species. This suggests that the failure to date to synthesize the simple manganese carbonyl fluorides arises from a lack of a suitable synthetic method rather than from the instability of the desired products.  相似文献   

19.
Two molecules of C(2)(CO(2)Me)(2) or isocyanides could be added to the title hydride complex under mild conditions to give dienyl-[W(2)Cp(2){μ-η(1),κ:η(2)-C(CO(2)Me)=C(CO(2)Me)C(CO(2)Me)=CH(CO(2)Me)}(μ-PCy(2))(CO)(2)] (Cp = η(5)-C(5)H(5)), diazadienyl-[W(2)Cp(2){μ-κ,η:κ,η-C{CHN(4-MeO-C(6)H(4))}N(4-MeO-C(6)H(4))}(μ-PCy(2))(CO)(2)] or aminocarbyne-bridged derivatives [W(2)Cp(2){μ-CNH(2,6-Me(2)C(6)H(3))}(μ-PCy(2)){CN(2,6-Me(2)C(6)H(3))}(CO)]. In contrast, its reaction with excess (4-Me-C(6)H(4))C(O)H gave the C-O bond cleavage products [W(2)Cp(2){CH(2)(4-Me-C(6)H(4))}(O)(μ-PCy(2))(CO)(2)] and [W(2)Cp(2){μ-η:η,κ-C(O)CH(2)(4-Me-C(6)H(4))}(O)(μ-PCy(2))(CO)].  相似文献   

20.
Metalladichalcogenolate cluster complexes [Cp'Co{E(2)C(2)(B(10)H(10))}]{Co2(CO)5} [Cp' = eta5-C5H5, E = S(3a), E = Se(3b); Cp' = eta5-C5(CH3)5, E = S(4a), E = Se(4b)], {CpCo[E(2)C(2)(B(10)H(10))]}(2)Mo(CO)2] [E = S(5a), Se(5b)], Cp*Co(micro2-CO)Mo(CO)(py)2[E(2)C(2)(B(10)H(10))] [E = S(6a), Se(6b)], Cp*Co[E(2)C(2)(B(10)H(10))]Mo(CO)2[E(2)C(2)(B(10)H(10))] [E = S(7a), Se(7b)], (Cp'Co[E(2)C(2)(B(10)H(10))]W(CO)2 [E(2)C(2)(B(10)H(10))] [Cp' = eta5-C5H5, E = S(8a), E = Se(8b); Cp' = eta5-C5(CH3)5, E = S(9a), E = Se(9b)], {CpCo[E(2)C(2)(B(10)H(10))]}(2)Ni [E = S(10a), Se(10b)] and 3,4-(PhCN(4)S)-3,1,2-[PhCN(4)SCo(Cp)S(2)]-3,1,2-CoC(2)B(9)H(8) 12 were synthesized by the reaction of [Cp'CoE(2)C(2)(B(10)H(10))] [Cp' = eta5-C5H5, E = S(1a), E = Se(1b); Cp' = eta5-C5(CH3)5, E = S(2a), E = Se(2b)] with Co2(CO)8, M(CO)3(py)3 (M = Mo, W), Ni(COD)2, [Rh(COD)Cl]2, and LiSCN4Ph respectively. Their spectrum analyses and crystal structures were investigated. In this series of multinuclear complexes, 3a,b and 4a,b contain a closed Co3 triangular geometry, while in complexes 5a-7b three different structures were obtained, the tungsten-cobalt mixed-metal complexes have only the binuclear structure, and the nickel-cobalt complexes were obtained in the trinuclear form. A novel structure was found in metallacarborane complex 12, with a B-S bond formed at the B(7) site. The molecular structures of 4a, 5a, 6a, 7b, 9a, 9b, 10a and 12 have been determined by X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号