首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using density functional theory(DFT) combined with nonequilibrium Green's function investigates the electron-transport properties of several molecular junctions based on the PBTDT-CH=NH molecule, which is modified by one to four alkyl groups forming PBTDT-(CH_2)_nCH=NH. The electronic structures of the isolated molecules(thiol-ended PBTDT-(CH2)_nCH=N) have been investigated before the electron-transport calculations are performed. The asymmetric current-voltage characteristics have been obtained for the molecular junctions. Rectifying performance of Au/S-PBTDT-CH=N-S/Au molecular junction can be regulated by introducing alkyl chain. The N3 molecular junction exhibits the best rectifying effect. Its maximum rectifying ratio is 878, which is 80 times more than that of the molecular junction based on the original N molecular junction. The current-voltage(I-V) curves of all the sandwich systems in this work are illustrated by transmission spectra and molecular projection density analysis.  相似文献   

2.
Using density functional theory (DFT) combined with the first-principles nonequilibrium Green's function (NEGF), we investigated the electron-transport properties and rectifying behaviors of several molecular junctions based on the bis-2-(5-ethynylthienyl)ethyne (BETE) molecule. To examine the roles of different rectification factors, asymmetric electrode-molecule contacts and donor-acceptor substituent groups were introduced into the BETE-based molecular junction. The asymmetric current-voltage characteristics were obtained for the molecular junctions containing asymmetric contacts and donor-acceptor groups. In our models, the computed rectification ratios show that the mode of electrode-molecule contacts plays a crucial role in rectification and that the rectifying effect is not enhanced significantly by introducing the additional donor-acceptor components for the molecular rectifier with asymmetric electrode-molecule contacts. The current-voltage characteristics and rectifying behaviors are discussed in terms of transmission spectra, molecular projected self-consistent Hamiltonian (MPSH) states, and energy levels of MPSH states.  相似文献   

3.
The electron-transport properties of various substituted molecules based on the thiol-ended thiophene dimer (2Th1DT) are investigated through density functional theory (DFT) combined with nonequilibrium Green's function (NEGF) method. The current-voltage (I-V) curves of all the Au/2Th1DT/Au systems in this work display similar steplike features, while their equilibrium conductances show a large difference and some of these I-V curves are asymmetric distinctly. The results reveal the dependence of conductance on the energy level of the substituted 2Th1DT molecules. Rectification ratios are computed to examine the asymmetric properties of the I-V curves. The rectifying behavior in the 2Th1DT molecule containing the amino group close to the molecular end is more prominent than that in the other molecules. The rectifying behavior is analyzed through transmission spectra and molecular projected self-consistent Hamiltonian (MPSH) states. Slight negative differential resistance (NDR) can be observed in some of the systems. The electron-transport properties of 2Th1DT molecules containing different heteroatoms are also investigated. The results indicate that the current in heteroatom-containing molecules is larger than that in their pristine analogues, and lighter heteroatoms are more favorable than heavier heteroatoms for electron transport of the thiophene dimer.  相似文献   

4.
The transport mechanisms of four σ-conjugated systems were comparatively studied by combining ATK and Gaussian 03 calculations. It was found that the charge-doped oligosilane behaved in a different way from the boron doped and phosphorus doped oligosilanes in terms of the transmission property. The charge-doped oligosilane showed almost no conductivity owing to the damage of the electron transfer path by charge-doping. By contrast, the boron doped and phosphorus doped oligosilanes were demonstrated to be good semiconductors and NDR behavior was observed for them. This is a reasonable result after the analysis of the transmission spectra, MPSH states, energy gap, conjugation effect, and scattering effect.  相似文献   

5.
电化学门控已成为一种可行且高效调节单分子电导的方法.在本研究中,我们证实了具有两个平行苯环的单分子电路中电子传输可以通过电化学门控控制.首先,我们利用STM-BJ技术以金为电极构筑了具有两条平行路径的单分子结.与单条路径的单分子结相比,两条路径的分子结由于具有增强性量子干涉效应,具有2.82倍的电导值.进一步地,我们利...  相似文献   

6.
A combined experimental and theoretical study on molecular junctions with asymmetry in both the electrode type and in the anchoring group type is presented. A scanning tunnelling microscope is used to create the “asymmetric” Au-S-(CH2)n-COOH-graphene molecular junctions and determine their conductance. The measurements are combined with electron transport calculations based on density functional theory (DFT) to analyze the electrical conductance and its length attenuation factor from a series of junctions of different molecular length (n). These results show an unexpected trend with a rather high conductance and a smaller attenuation factor for the Au-S-(CH2)n-COOH-graphene configuration compared to the equivalent junction with the “symmetrical” COOH contacting using the HOOC-(CH2)n-COOH series. Owing to the effect of the graphene electrode, the attenuation factor is also smaller than the one obtained for Au/Au electrodes. These results are interpreted through the relative molecule/electrode couplings and molecular level alignments as determined with DFT calculations. In an asymmetric junction, the electrical current flows through the less resistive conductance channel, similarly to what is observed in the macroscopic regime.  相似文献   

7.
《中国化学快报》2023,34(1):107813
Spin properties of organic molecules have attracted great interest for their potential applications in spintronic devices and quantum computing. Fe-tetraphenyl porphyrin (FeTPP) is of particular interest for its robust magnetic properties on metallic substrates. FeTPP is prepared in vacuum via on-surface synthesis. Molecular structure and spin-related transport properties are characterized by low-temperature scanning tunneling microscope and spectroscopy at 0.5 K. Density functional theory calculations are performed to understand molecular adsorption and spin distribution on Au(111). The molecular structure of FeTPP is distorted upon adsorption on the substrate. Spin excitations of FeTPP are observed on the Fe atom and high pyrrole groups in differential conductance spectra. The calculated spin density distribution indicates that the electron spin of FeTPP is mainly distributed on the Fe atom. The atomic transmission calculation indicates that electrons transport to substrate is mediated through Fe atom, when the tip is above the high pyrrole group.  相似文献   

8.
The electronic and transport properties of an edge-modified prototype graphene nanoribbon (GNR) slice are investigated using density functional theory and Green's function theory. Two decorating functional group pairs are considered, such as hydrogen-hydrogen and NH(2)-NO(2) with NO(2) and NH(2) serving as a donor and an acceptor, respectively. The molecular junctions consist of carbon-based GNR slices sandwiched between Au electrodes. Nonlinear I-V curves and quantum conductance have been found in all the junctions. With increasing the source-drain bias, the enhancement of conductance is quantized. Several key factors determining the transport properties such as the electron transmission probabilities, the density of states, and the component of Frontier molecular orbitals have been discussed in detail. It has been shown that the transport properties are sensitive to the edge type of carbon atoms. We have also found that the accepter-donor functional pairs can cause orders of magnitude changes of the conductance in the junctions.  相似文献   

9.
Carbon/molecule/TiO2/Au molecular electronic junctions show robust conductance switching, in which a metastable high conductance state may be induced by a voltage pulse which results in redox reactions in the molecular and TiO2 layers. When Ag is substituted for Au as the "top contact", dramatically different current/voltage curves and switching behavior result. When the carbon substrate is biased negative, an apparent breakdown occurs, leading to a high conductance state which is stable for at least several hours. Upon scanning to positive bias, the conductance returns to a low state, and the cycle may be repeated hundreds of times. Similar effects are observed when Cu is substituted for Au and for three different molecular layers as well as "control" junctions of the type carbon/TiO2/Ag/Au. The polarity of the "switching" is reversed when the Ag layer is between the carbon and molecular layers, and the conductance change is suppressed at low temperature. Pulse experiments show very erratic transitions between high and low conductivity states, particularly near the switching threshold. The results are consistent with a switching mechanism based on Ag or Cu oxidation, transport of their ions through the TiO2, and reduction at the carbon to form a metal filament.  相似文献   

10.
利用第一性密度泛函理论和非平衡格林函数相结合的方法,研究了碱金属原子掺杂对BDC60 分子电子输运性质的影响. 计算结果表明,在极低偏压下碱金属掺杂的BDC60分子能够表现出非常优良的整流性能,同时也展示出显著的负微分电阻行为. 根据透射谱和前线分子轨道及其空间分布随外加偏压的变化等方面的分析,系统地讨论了整流以及负微分电阻行为产生的内在机理. 我们的研究有助于BDC60 分子在未来低偏压整流和负微分电阻分子器件中的应用.  相似文献   

11.
A hybrid monolayer film of Au nanoparticles, half-covered with dioctadecyldimethylammonium chloride (DODAC), was prepared at the air/water interface and characterized using transmission electron microscopy (TEM), a quartz-crystal microbalance, and infrared spectra measurements. TEM images of the hybrid film showed that the distribution of Au nanoparticles depends on the surface density of DODAC and reaction time. IR spectral data provided evidence for a surface-enhanced effect of the Au nanoparticles. The wavenumber of CH(2)-stretch vibrations of DODAC in the infrared external reflection spectra revealed that the DODAC molecules were adsorbed onto the Au nanoparticles in a close-packed crystalline state for any surface density of DODAC, which is different from the usual behavior of Langmuir monolayers.  相似文献   

12.
Nanoscopic tunnel junctions were formed by contacting Au-, Pt-, or Ag-coated atomic force microscopy (AFM) tips to self-assembled monolayers (SAMs) of alkanethiol or alkanedithiol molecules on polycrystalline Au, Pt, or Ag substrates. Current-voltage traces exhibited sigmoidal behavior and an exponential attenuation with molecular length, characteristic of nonresonant tunneling. The length-dependent decay parameter, beta, was found to be approximately 1.1 per carbon atom (C(-1)) or 0.88 A(-)(1) and was independent of applied bias (over a voltage range of +/-1.5 V) and electrode work function. In contrast, the contact resistance, R(0), extrapolated from resistance versus molecular length plots showed a notable decrease with both applied bias and increasing electrode work function. The doubly bound alkanedithiol junctions were observed to have a contact resistance approximately 1 to 2 orders of magnitude lower than the singly bound alkanethiol junctions. However, both alkanethiol and dithiol junctions exhibited the same length dependence (beta value). The resistance versus length data were also used to calculate transmission values for each type of contact (e.g., Au-S-C, Au/CH(3), etc.) and the transmission per C-C bond (T(C)(-)()(C)).  相似文献   

13.
Adsorption of 5‐fluorouracil (5‐FU) and 2,4‐dithio‐5‐fluorouracil (2,4‐DT‐5‐FU) on Au(111) surface at low coverage is studied by using periodic‐slab‐density functional theory calculation. Isolated 5‐FU molecule adsorbs preferentially at bridge site in a vertical configuration via N? H group by forming the N? H···Au nonconventional H‐bond. The formation of the anchor Au? O bond is not observed. Substitution of oxygen atoms of 5‐FU with sulfur strongly influences the nature of adsorption and leads to the Au? S anchor bond and the N? H···Au nonconventional H‐bond of single 2,4‐DT‐5‐FU molecule on Au(111) surface. The adsorption site and orientation of 2,4‐DT‐5‐FU molecule on the surface are similar to those of 5‐FU. The metal–molecule coupling effects at asymmetric Au/S(N? H)S/mol/C? H/Au and Au/N? H/mol/O/Au transport junctions and symmetric Au/S(N? H)S/mol/mol/S(N? H)S/Au and Au/O/mol/mol/O/Au transport junctions are also investigated. The electronic structure is analyzed in detail, and the obtained results are used for illustrating the electron transmission in metal–molecule–metal systems. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

14.
A unique molecular junction design is described, consisting of a molecular mono- or multilayer oriented between a conducting carbon substrate and a metallic top contact. The sp2 hybridized graphitic carbon substrate (pyrolyzed photoresist film, PPF) is flat on the scale of the molecular dimensions, and the molecular layer is bonded to the substrate via diazonium ion reduction to yield a strong, conjugated C-C bond. Molecular junctions were completed by electron-beam deposition of copper, titanium oxide, or aluminium oxide followed by a final conducting layer of gold. Vibrational spectroscopy and XPS of completed junctions showed minimal damage to the molecular layer by metal deposition, although some electron transfer to the molecular layer resulted in partial reduction in some cases. Device yield was high (>80%), and the standard deviations of junction electronic properties such as low voltage resistance were typically in the range of 10-20%. The resistance of PPF/molecule/Cu/Au junctions exhibited a strong dependence on the structure and thickness of the molecular layer, ranging from 0.13 ohms cm2 for a nitrobiphenyl monolayer, to 4.46 ohms cm2 for a biphenyl monolayer, and 160 ohms cm2 for a 4.3 nm thick nitrobiphenyl multilayer. Junctions containing titanium or aluminium oxide had dramatically lower conductance than their PPF/molecule/Cu counterparts, with aluminium oxide junctions exhibiting essentially insulating behavior. However, in situ Raman spectroscopy of PPF/nitroazobenzene/AlO(x)/Au junctions with partially transparent metal contacts revealed that redox reactions occurred under bias, with nitroazobenzene (NAB) reduction occurring when the PPF was biased negative relative to the Au. Similar redox reactions were observed in PPF/NAB/TiO(x)/Au molecular junctions, but they were accompanied by major effects on electronic behavior, such as rectification and persistent conductance switching. Such switching was evident following polarization of PPF/molecule/TiO2/Au junctions by positive or negative potential pulses, and the resulting conductance changes persisted for several minutes at room temperature. The "memory" effect implied by these observations is attributed to a combination of the molecular layer and the TiO2 properties, namely metastable "trapping" of electrons in the TiO2 when the Au is negatively biased.  相似文献   

15.
The electronic transport properties of a single quintuple bond [PhCrCrPh] molecule sandwiched between two Au(111) surfaces with the trans-bent and linear configurations are studied by a fully self-consistent nonequilibrium Green's function method combined with density functional theory. The calculated transmission spectra of two chemical isomers are remarkably distinctive. Theoretical results suggest that the current through the trans-bent configuration is significantly larger than the corresponding linear one. The predicted on-off ratio of currents ranging from around 50 to 200 in the applied bias window [-1.5 V, 1.5 V] suggests that multiple bond compounds have attractive potential in molecular switch technology.  相似文献   

16.
We design a new type of molecular diode, based on the organoimido derivatives of hexamolybdates, by exploring the rectifying performances using density functional theory combined with the non‐equilibrium Green’s function. Asymmetric current–voltage characteristics were obtained for the models with an unexpected large rectification ratio. The rectifying behavior can be understood by the asymmetrical shift of the transmission peak observed under different polarities. It is interesting to find that the preferred electron‐transport direction in our studied system is different from that of the organic D ‐bridge‐A system. The results show that the studied organic–inorganic hybrid systems have an intrinsically robust rectifying ratio, which should be taken into consideration in the design of the molecular diodes.  相似文献   

17.
本文基于密度泛函(DFT)结合非平衡格林函数(NEGF)的方法,以具有氧化还原中心的紫罗碱衍生物(N,N'-bis(4-thioalkyl)-4,4'-bipyridinium,HS-4V4-SH)功能分子构造Au(111)/S-4V4-S/Au(111)分子结,详细分析了分子在三种价态V、V+和V2+下的电学性质与分...  相似文献   

18.
双氰胺是氰胺的二聚体,具有亚氨式和氨式两种互变异构体.将表面增强拉曼光谱(SERS)与密度泛函理论(DFT)结合,研究了互变异构的双氰胺分子在金表面的吸附行为.通过理论计算获得了亚氨式和氨式双氰胺分子的能量、分子轨道和光谱信息,以及双氰胺分子吸附在金簇表面的SERS响应.计算结果表明两种异构化的双氰胺分子都与Au3簇形成较稳定的复合物,并且双氰胺分子中N2原子优先吸附在金簇表面.拉曼实验结果与计算结果较为吻合,进一步说明具有互变异构的双氰胺分子在金基底中共存,并通过N2原子垂直吸附到金表面,符合SERS电磁场增强机制.  相似文献   

19.
Understanding the effects of intermolecular interactions on the charge-transport properties of metal/molecule/metal junctions is an important step towards using individual molecules as building blocks for electronic devices. This work reports a systematic electron-transport investigation on a series of "core-shell"-structured oligo(phenylene ethynylene) (Gn-OPE) molecular wires. By using dendrimers of different generations as insulating "shells", the intermolecular π-π interactions between the OPE "cores" can be precisely controlled in single-component monolayers. Three techniques are used to evaluate the electron-transport properties of the Au/Gn-OPE/Au molecular junctions, including crossed-wire junction, scanning tunneling spectroscopy (STS), and scanning tunneling microscope (STM) break-junction techniques. The STM break-junction measurement reveals that the electron-transport pathways are strongly affected by the size of the side groups. When the side groups are small, electron transport could occur through three pathways, including through single-molecule junctions, double-molecule junctions, and molecular bridges between adjacent molecules formed by aromatic π-π coupling. The dendrimer shells effectively prohibit the π-π coupling effect, but at the same time, very large dendrimer side groups may hinder the formation of Au-S bonds. A first-generation dendrimer acts as an optimal shell that only allows electron transport through the single-molecule junction pathway, and forbids the other undesired pathways. It is demonstrated that the dendrimer-based core-shell strategy allows the single-molecule conductance to be probed in a homogenous monolayer without the influence of intermolecular π-π interactions.  相似文献   

20.
Density functional theory combined with nonequilibrium Green's function techniques was used to model the conduction through disubstituted benzenedithiol molecules bonded to leads composed of 3x3, 5x5 gold and 3x3 aluminum. For the disubstituted 3x3 Au-benzenedithiol-Au systems, the small lead cross section results in a region of nearly zero transmission from -0.4 to -0.2 eV, relative to E(F), due to the absence of lead states. This feature results in negative differential resistance in the current-voltage curves and also causes the main peaks in the transmission spectra, which are dominated by the highest occupied molecular orbitals, to be centered near E(F). The zero-bias transmissions for the disubstituted benzenedithiol, as well as currents at applied biases, correlate very well with the Hammett parameter sigma(p), a quantity that relates the electron donating or withdrawing strength of a substituent. Calculations on disubstituted benzenedithiol connected to 5x5 Au leads produced transmission spectra that showed no gaps over the energy range considered and no negative differential resistance. The transmission in these cases also predominately involves the highest occupied molecular orbitals, and electron donating and withdrawing groups are able to increase and decrease current, respectively. However, there is no strong correlation between current and sigma(p) for this system. This suggests that the correlation observed in the 3x3 Au systems arises from the abrupt cutoff of the main transmission peaks near E(F). The disubstituted 3x3 Al-benzenedithiol-Al systems displayed markedly different behavior from the Au analogs. Electron donating groups and H benzenedithiol-substituted systems display almost no transmission over the energy range considered. However, electron withdrawing group disubstituted benzenedithiol systems had significant peaks in the transmission spectra near E(F), which are associated with the lowest-energy, unoccupied pi-type molecular orbitals. Higher currents are calculated for cases where the substituents have pi-type orbitals that are conjugated with the ring moiety of benzenedithiol. In all cases, the current through the 3x3 Al-benzenedithiol-Al systems is about a factor of 2 less than that through the analogous Au systems. These simulations reveal that the electrical conductance behavior through nanosystems of the type investigated in this work depends on the nature of the molecule as well as the size and composition of the leads to which it is connected. The results suggest that rational design of nanoelectronic systems might be possible under certain conditions but that structure-function relationships cannot be transferred from one system to another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号