首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Visible light irradiation of the [(η-C6H7)Fe(η-C6H6)]+ cation (1) in CH2Cl2 in the presence of alkyl-substituted benzenes results in arene exchange forming the [(η5-C6H7)Fe(η-C6R6)]+ cations (2a–d: C6R6 is toluene, p-xylene, mesitylene, and durene). The mixed bis(arene) [(η-C6H6)Fe(η-C6R6)]2+ iron complexes (3a–d) were synthesized by hydride ion abstraction from 2a–d by [Ph3C]+. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1864–1865, September, 2007.  相似文献   

2.
The reaction of the iodide complex [(η5-C9H2Me5)RhI2]2 (1) or the acetonitrile complex [(η5-C9H2Me5)Rh(MeCN)3]2+ with Tl[Tl(η-7,8-C2B9H11)] afforded rhodacarborane (η5-C9H2Me5)Rh(7,8-C2B9H11) (2). The cationic triple-decker complex with the bridging boratabenzene ligand [Cp*Fe(μ-η:η-C5H3Me2BMe)Rh(η5-C9H2Me5)]2+ (3) was synthesized by the reaction of the nitromethane solvate [(η5-C9H2Me5)Rh(MeNO2)3]2+ with the sandwich compound Cp*Fe(η-C5H3Me2BMe). The structure of 2 was established by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1623–1625, August, 2008.  相似文献   

3.
Oxidation of the cyclohexadienyl complex Fe(η5-C5H5)(1-5-75-6-exo-C5H5-C6H6) (2) by (Ph3C)PF6 (CH2Cl2, from −30 to +20 °C) occurs as two concurrent processes: elimination of an H atom from the cyclohexadienyl ligand and replacement of an H atom in the cyclopentadienyl ring by a CPh3 fragment. A mixture of cationic complexes [Fe(η5-C5H5) (η6-Ph-C5H5]+ (1+) and [Fe(η5-C5H4CPh3) (η6-Ph-C5H5]+ (4+) (4 +) with PF6 anions is obtained. Deprotonation of the mixture of 1+ and 4+ complexes under the action of Bu t OK inm-xylene followed by boiling of the reaction mixture gives phenylferrocene (7) as the product of η66 haptotropic rearrangement. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, NO. 5, pp. 1045–1047, May, 1997.  相似文献   

4.
The photochemical reaction of [(η5-C6H7)Fe(η-C6H6)]+ (1) with the [(η-9-SMe2-7,8-C2B9H10)] anion followed by the treatment of the resulting ferracarborane (η-9-SMe2-7,8-C2B9H10)Fe(η5-C6H7) (2) with hydrochloric acid afforded the benzene complex [(η-9-SMe2-7,8-C2B9H10)Fe(η-C6H6)]+ (3). The reaction of cation 3 with ButNC produced the isonitrile complex [(η-9-SMe2-7,8-C2B9H10)Fe(tBuNC)3]+ (4). The structure of the complex [4]PF6 was established by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2046–2048, October, 2007.  相似文献   

5.
Three diruthenium carbonyl complexes, namely (η 3:η 5-C5H4C(CH2)2)Ru2(CO)5 (1), (η 3:η 5-C5H4C(CHCH2)(C2H5))Ru2(CO)5 (2), and (η 1:η 5-C5H4C5H8)Ru2(CO)6 (3), were obtained from the reactions of C5H4C(Me)2, C5H4C(Et)2, and C5H4C(CH2)4, respectively, with Ru3(CO)12 in refluxing xylene. The complexes were characterized by elemental analysis, IR and 1H NMR spectra. Single-crystal X-ray diffraction analysis for complexes 1 and 2 revealed that the fulvene ligands bridge two ruthenium atoms in η 3:η 5 fashion.  相似文献   

6.
The reaction of Cp2MCl2 complexes (M=Ti and Zr) with 2 equiv. of (OC)3Mn(η15-C5H4)Fe(CO)25-C5H4COONa) results in the formation of the pentanuclear complexes (OC)3Mn(η15-C5H4)Fe(CO)25-C5H4CO2)]2M(η5-C5H5)2, which are characterized by IR and1H NMR spectroscopy and cyclic voltammetry. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1055–1058, May, 1997.  相似文献   

7.
New functionalized indenyl ligands IndX = 1,3-C9H5(Pri)(CH2CH2X) (X = OMe or NMe2) and 1,3-C9H5(Pri)[CMe2CH2(2′-py)] and the zirconium sandwich complexes (IndX)Cp*ZrCl2 (Cp* is pentamethylcyclopentadienyl) were synthesized. The photochemical behavior and the reduction reactions of zirconocene dichlorides were investigated. The properties of these compounds are determined mainly by the high lability of Zr-Ind bonds. The reduction of (IndX)Cp*ZrCl2 (X = NMe2) selectively affords the complex Cp*[η52-(C,N)-C9H5(Pri)CH2CH2N(Me)CH2]ZrH as the intramolecular NCH2-H bond activation product. The molecular structures of the complex (IndX)Cp*ZrCl2 (X = OMe) and its photochemical decomposition product [Cp*ZrCl2(OMe)]2 were established by X-ray diffraction.  相似文献   

8.
Three diiron carbonyl complexes, namely [(η 5-C5H4)(η 3-C(CH2)2)]Fe2(CO)5 (1), [(C2H5)2C(η 5-C5H4)2]Fe2(μ-CO)2(CO)2 (2), and [(CH2)4C(η 5-C5H4)(η 5-C5H3)(C5H9)]Fe2(μ-CO)2(CO)2 (3), have been synthesized by the reactions of C5H4C(Me)2, C5H4C(Et)2, and C5H4C(CH2)4, respectively, with Fe(CO)5 in refluxing xylene. The complexes have been characterized by elemental analysis, IR, and 1H NMR spectra. The molecular structures of the complexes have been determined by single-crystal X-ray diffraction. The structures of the complexes indicate that fulvenes can be bound to transition metal centers by diverse modes.  相似文献   

9.
The difurylphosphido-bridged dinuclear complex [Ru2(CO)6(μ-PFu2)(μ-η12-Fu)] (Fu = 2-furyl) 1 readily reacts with two equivalents of each of the terminal alkynes HC≡CR (R = Fc, p-C6H4Fc, p-C6H4NO2, Fc = Fe(η5-C5H5)(η5-C5H4)) by an interesting head-to-tail ynyl coupling with a furan group to form a series of phosphido-bridged diruthenium compounds containing a novel furyl-substituted C4 hydrocarbyl chain of stoichiometry [Ru2(CO)4(μ-PFu2){μ-η1123-RCC(H)C(R)C(H)Fu}] (R = Fc 2, p-C6H4Fc 3, p-C6H4NO2 4) in moderate to good yields. Reaction of 1 with an equimolar amount of HC≡CFc and HC≡C(p-C6H4NO2) afforded a pair of isomers of [Ru2(CO)4(μ-PFu2){μ-η1123-R1CC(H)C(R2)C(H)Fu}] (R1 = Fc, R2 = p-C6H4NO2 5a; R1 = p-C6H4NO2, R2 = Fc 5b) together with a small mixture of 4. X-ray crystal structures of 2, 3, 5a and 5b are reported. All of these new alkyne-derived dinuclear complexes are electron precise with 34 cluster valence electrons in which the μ-η12-furyl ligand acts as a three-electron donor and the μ-phosphido Ru2 framework is retained in the products upon alkyne coupling reactions. The resulting organic fragment of each complex is coordinated to the Ru atoms via a π, a π-allyl and two σ bonds, and donates seven electrons to the metal core. Dedicated to the memory of Professor F. Albert Cotton.  相似文献   

10.
The new side-chain functionalized cyclopentadienyl ligand LiC5H4CPh2CH2R (R is 1-methylimidazol-2-yl) as lithium salt 2, the trimethylsilyl derivative Me3SiC5H4CPh2CH2R (3), and the ligand in the CH form (4) were prepared starting from 6,6-diphenylfulvene and 1,2-dimethylimidazole lithiated at the 2-Me group (1) and then characterized. The half-sandwich complexes (η51-C5H4CPh2CH2R)TiCl3 (5) and (η51-C5H4CPh2CH2R)ZrCl3 (6) were synthesized. The molecular structure of complex 5 was established by X-ray diffraction. Complexes 5 and 6 exhibit dynamic behavior in solution associated with degenerate interconversion of the pseudo-six-membered metallacycle. For titanium complex 5 in a solvating solvent, a dynamic process due to intramolecular dissociation—coordination of the imidazole fragment was observed. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1518–1524, September, 2006.  相似文献   

11.
The previously unknown metallacarboranes (η-C5R5)Ru(η-9-Me2S-7,8-C2B9H10) (R=H or Me) and (η-C5H5)Ni(η-9-Me2S-7,8-C2B9H10) were prepared and used in the synthesis of the first metallacarborane triple-decker complexes with a central cyclopentadienyl ligand, viz., [(η-C5R5)Ru(μ-η:η-C5Me5)Ru(η-9-Me2S-7,8-C2B9H10)]PF6 (R=H or Me), [(η-9-Me2S-7,8-C2B9H10)Ni(μ-η:η-C5H5)Ni(η-9-Me2S-7,8-C2B9H10)]PF6, and [(η-C5H5)Ni(μ-η:η-C5H5)Ni(η-9-Me2S-7,8-C2B9H10)]BF4. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1368–1373, July, 1999.  相似文献   

12.
The intracomplex conversion of (2-diphenylphosphanoethyl)cyclopentadienyl zirconium and titanium complexes into the corresponding 2-phosphinothioyl and 2-phosphinoyl derivatives, viz., (η5-C5H5)[η 5-C5H4CH2CH2P(S)Ph2]ZrCl2, [η5-C5H4CH2CH2P(S)Ph2]ZrCl3, [η51C5H4CH2CH2P(O)Ph2]ZrCl3·THF, and [η51-C5H4CH2CH2P(O)Ph2]TiCl3 (7), was performed. The NMR spectroscopy data revealed the following order of the coordination ability of the functional groups with respect to the Zr center: Ph2P=O > Ph2P > Ph2P=S. An analogous order was found for the monodentate ligands (Ph3P=O > Ph3P > Ph3P=S) with respect to (η5-C5H5)ZrCl3. The molecular structure of complex 7 was established by X-ray diffraction analysis. Coordination of the Ph2P=O group to the titanium atom was found retained both in the crystalline state and solution.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 116–122, January, 2005.  相似文献   

13.
Two novel bimetallic complexes, [Cr(CO)3(η 6-C6H5)–C≡C–C6H4–Fc] (Fc = C5H5FeC5H4] (1) and [Cr(CO)3(η 6-C6H5)–C ≡ C–Fc–C(CH3)2–Fc] (3), were synthesized by the Sonogashira coupling reaction. By using of (1) and (3) as ligands to react with Co2(CO)8, two others novel polymetallic complexes, [Cr(CO)3(η 6-C6H5){Co2(CO)6-η 2-μ 2-C≡C–}–C6H4–Fc] (2) and [Cr(CO)3(η 6-C6H5){Co2(CO)6-η 2-μ 2-C≡C–}Fc–C(CH3)2–Fc] (4) were obtained. Four carbonyl complexes were characterized by elemental analysis, FT-IR, NMR and MS. The molecular structures of complexes (1), (2) and (4) were determined by single crystal X-ray diffraction. The interactions among the ferrocenyl, Cr(CO)3 and Co2(CO)6-η 2-μ 2-C≡C– units were investigated by cyclic voltammetry.  相似文献   

14.
The reaction of the [(η-9-SMe2-7,8-C2B9H10)IrBr2]2 complex with Tl[Tl(η-7,8-C2B9H11)] afforded the iridacarborane compound (η-9-SMe2-7,8-C2B9H10)Ir(η-7,8-C2B9H11). The cationic complex [Cp*Ir(η-9-SMe2-7,8-C2B9H10)]+PF6 (5 · PF6, Cp* is pentamethylcyclopentadienyl) was synthesized by the reaction of [Cp*IrCl2]2 with Na[9-SMe2-7,8-C2B9H10]. The structures of (η-9-SMe2-7,8-C2B9H10)Ir(η-cod) (cod is 1,5-cyclooctadiene) and 5 · PF6 were established by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 81–84, January, 2006.  相似文献   

15.
The visible light irradiation of the [(η5-C6H7)Fe(η-C6H6)]+ cation (1) in acetonitrile resulted in the substitution of the benzene ligand to form the labile acetonitrile species [(η5-C6H7)Fe(MeCN)3]+ (2). The reaction of 1 with ButNC in MeCN produced the stable isonitrile complex [(η5-C6H7)Fe(ButNC)3]+ (3). The photochemical reaction of cation 1 with pentaphosphaferrocene Cp*Fe(η-cyclo-P5) afforded the triple-decker cation with the bridging pentaphospholyl ligand, [(η5-C6H7)Fe(μ-η:η-cyclo-P5)FeCp*]+ (4). The latter complex was also synthesized by the reaction of cation 2 with Cp*Fe(η-cyclo-P5). The structure of the complex [3]PF6 was established by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2088–2091, November, 2007.  相似文献   

16.
The reaction of the (borole)rhodium iodide complex [(η-C4H4BPh)RhI]4 with Cp*Li afforded the sandwich compound Cp*Rh(η-C4H4BPh) (4). The reactions of compound 4 with the solvated complexes [Cp*M(MeNO2)3]2+(BF 4 )2 gave triple-decker cationic complexes with the central borole ligand [Cp*Rh(η-η55-C4H4BPh)MCp*]2+(BF 4 )2 (M = Rh (5) or Ir (7)). The structure of complex 4 was established by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1525–1527, September, 2006.  相似文献   

17.
The intercalation of metallocenes (Cp2Co, Cp2Fe, and Cp2Ni, where Cp is η5-C5H5) from the gas phase into the TiSe2 lattice and of cobaltocene from solutions in acetonitrile, carbon tetrachloride, and chloroform into TiSe2 was studied. The insertion of metallocenes from the gas phase into the TiSe2 lattice gives rise to the TiSe2(Cp2M)0.3 compounds (M = Co or Fe) having the same stoichiometry. The reactions with the use of acetonitrile as the solvent for metallocenes, which facilitates the insertion, afford not only the intercalation complex but also the reaction product of metallocene and acetonitrile, viz., (η 5-C5H5)Co(η4-C5H5CH2CN) (1). In the reactions of cobaltocene with chloroform or carbon tetrachloride in the presence of titanium diselenide, only the addition product, viz., (η 5-C5H5)Co(η4-C5H5CCl3) (2), was isolated. The structures of complexes 1 and 2 were studied by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 876–880, May, 2007.  相似文献   

18.
The ability of cyclopentadienyl type derivatives of corannulene C20H10 and fullereneI h -C60 to form η5-π-complexes and the problem of their existence is discussed. MNDO/PM3 calculations of half-sandwich complexes η5-π-MC20H15, η5-π-MC20H 15 + , η5-π-MC60H5, η5-π-MC60H5 and sandwich complexes 2η5-π-M(C20H15)2, 2η5-π-M(C20H15)2, 2η5-π-M(C60H5)2 (M=Si, Ge, Sn, Pb) were performed. For all systems studied, local minima were found on corresponding potential energy surfaces and the heats of formation, geometric parameters, and distributions of effective atomic charges were calculated. Sandwich complexes are most likely to exist with M=Si and Ge. The energy and geometric characteristics of η5-π-complexes of corannulene were compared with those of η5-π-complexes of fullereneI h -C60. It was concluded that the results of quantum-chemical calculations of sandwich type corannulene derivatives can be used for simulation of the geometry and electronic structure of analogous complexes of fullereneI h -C60. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1649–1656, September, 1999.  相似文献   

19.
Irradiation of the cation [η-C5Me4H)Fe(η-C6H6)]++ (1) and ButNC with visible light in acetonitrile results in the displacement of the benzene ligand, giving [(η-C5Me4H)Fe(ButNC)3]+ (2). Reactions of complex 1 with P(OR)3 and dppe in MeCN yield the complexes [(η-C5Me4H)-Fe(MeCN)P(OR)3 2]+ (R = Me (3) and Et (4)) and [(η-C5Me4H)Fe(MeCN)(dppe)]+ (5) containing two Fe—P bonds. The same reactions in CH2Cl2 give the tris(phosphite) complexes [(η-C5Me4H)FeP(OR)3 3]+ (6, 7). A photochemical reaction of complex 1 with pentaphos-phaferrocene Cp*Fe(η-cyclo-P5) yields the triple-decker cation [(η-C5Me4H)Fe(μ-η:η-cyclo-P5)FeCp*]+ (8) with a bridging pentaphospholyl ligand. Structures [2]PF6 and [3]PF6 were identified by X-ray diffraction.  相似文献   

20.
    
The reaction of [{(η5-C5Me5)M(μ-Cl)Cl}2] {where M = Rh (1), Ir (2)} with functionalized phosphine viz., diphenyl-2-pyridylphosphine (PPh2Py) in dichloromethane solvent yield neutral ϰ1-P-coordinated rhodium and iridium complexes [(η5-C5Me5)RhCl21-P-PPh2Py)]3 and [(η5-C5Me5) IrCl21-P-PPh2Py)]4. Reaction of complexes 1 and 2 with the ligand PPh2Py in methanol under reflux give bis-substituted complexes such as [(η5-C5Me5)RhCl(ϰ1-P-PPh2Py)2]+ 5 and [(η5-C5Me5)IrCl(ϰ1-P-PPh2Py)2]+ 6, whereas stirring in methanol at room temperature gives P-, N-chelating complexes of the type [(η5-C5Me5)RhCl(ϰ2-P-N-PPh2Py)]+ 7 and [(η5-C5Me5)IrCl(ϰ2-P-N-PPh2Py)]+ 8. Neutral ϰ1-P-coordinated complexes [(η5-C5Me5)RhCl21-P-PPh2Py)]3 and [(η5-C5Me5)IrCl21-P-PPh2Py)]4 easily undergo conversion to the cationic P-, N-chelating complexes [(η5-C5Me5)RhCl(ϰ2-P-N-PPh2Py)]+ 7 and [(η5-C5Me5) IrCl(ϰ2-P, N-PPh2Py)]+ 8 on stirring in methanol at room temperature. These complexes are characterized by FT-IR and FT-NMR spectroscopy as well as analytical methods. The molecular structures of the representative complexes [(η5-C5Me5)RhCl21-P-PPh2Py)]3, [(η5-C5Me5)IrCl21-P-PPh2Py)]4 and hexafluorophosphate salt of complex [(η5-C5Me5)IrCl(ϰ2-P-PPh2Py)2]+ 6 are established by single-crystal X-ray diffraction methods  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号