首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 201 毫秒
1.
王照亮  梁金国  唐大伟  Y.T.Zhu 《物理学报》2008,57(6):3391-3396
考虑纳米碳管与基体之间的热损失,采用四焊盘-3ω法测量了室温下基体表面不同长度单根单壁碳纳米管(SWNT)的导热系数.SWNT的导热系数在测试长度范围(05—7μm)内随长度的增大而增大,增加的幅度逐渐减小.考虑二阶3-声子过程的影响,采用改进的WV模型预测了SWNT导热系数随长度的变化规律.理论预测的声子平均自由程~175nm.导热系数的测量结果与室温下不同长度SWNT的实验结果相吻合.理论预测结果与实验结果均说明SWNT导热系数随长度变化具有尺度效应. 关键词: ω法')" href="#">3ω法 单壁碳纳米管 导热系数 二阶3-声子过程  相似文献   

2.
邱荣  蒋勇  郭德成  史晋芳  李翠  叶成  周强  韩伟  黄进 《强激光与粒子束》2020,32(1):011011-1-011011-5
对比研究了3ω单独辐照、3ω+2ω和3ω+1ω双波长同时辐照下熔石英元件的初始损伤和损伤增长规律,重点研究3ω能量密度在其阈值附近时,低能量密度的2ω和1ω对初始损伤和损伤增长的影响,分析了波长间的能量耦合效应。结果表明:双波长同时辐照下,当2ω和1ω能量密度远低于其自身阈值时,它们对初始损伤几率和损伤增长阈值的影响可以忽略,但也会参与初始损伤和损伤增长过程,会增加初始损伤程度和损伤增长系数。基于飞秒双脉冲成像的冲击波速度测量表明,3ω和1ω同时辐照下,波长间的能量耦合效应会促进激光能量向材料沉积的效率。  相似文献   

3.
张瑞芳  程庆华  徐大海 《物理学报》2015,64(2):24211-024211
在周期力调制噪声驱动下单模激光系统的光强方程中加入调幅波, 用线性化近似方法计算了系统的光强关联函数和输出信噪比, 并对信噪比进行数值计算和分析, 发现低频调制频率Ω、高频载波频率ω和周期力频率Ωλ对系统的输出信噪比有很大的影响. 具体表现为信噪比R 随低频调制频率Ω 的变化过程中出现了多重随机共振和极强的单峰共振, 当Ω << ω 时, 系统出现的是多峰共振, 且随着Ωλ 增加, 共振峰间的距离增大, 峰值位置不变; 当Ωω 时, 输出信噪比R迅速增大, 而Ωλ 的影响被削弱甚至可以忽略, 多峰共振消失; 当Ω = ω 时, 系统出现了极强的单峰共振. 此外, 信噪比随周期力频率的变化呈现振幅减小的多重随机共振, 而随载流频率的变化出现单峰随机共振.  相似文献   

4.
吕志忠  张天祺  钟功祥 《物理学报》2015,64(17):174204-174204
利用钛宝石飞秒激光器输出的基频脉冲ω及其倍频脉冲2ω所构成双色场作用空气, 实验中检测到了中心波长处于真空紫外波段的四阶谐波. 在气体未发生电离的情况下, 四次谐波强度对双色场的能力依赖关系显示其产生是参量过程2ω+ω+ω→4ω的贡献. 当气体发生电离, 四次谐波强度与双色场相对相位有关, 可通过双色场相干控制. 实验研究了四次谐波对双色场相位的依赖性以及与太赫兹波的关联性, 其结果与数值模拟结果相符, 分析发现当气体发生电离时四次谐波的产生过程存在太赫兹辐射ΩTHz的参与, 是参量过程2ω+2ω±ΩTHz→4ω和2ω+ω+ω→4ω的共同贡献.  相似文献   

5.
罗派峰  唐新峰  熊聪  张清杰 《物理学报》2005,54(5):2403-2408
用两步固相反应法合成了P型Ba填充方钴矿化合物Ba0.3FeCo3Sb12,并采用放电等离子烧结法(SPS)制备了Ba0.3FeCo3Sb12/多壁碳纳米管复合材料.研究了Ba0.3FeCo3Sb12/多壁碳纳米管复合材料的结构及多壁碳纳米管对其热电性能的影响规律:SEM分析表明多壁碳纳米管比较均匀地分布在Ba0.3FeCo3Sb12基体中;随着碳纳米管添加量的增加,Ba0.3FeCo3Sb12/多壁碳纳米管复合材料的电导率下降、塞贝克系数略微下降、晶格热导率大幅度降低,当碳纳米管含量为5%时其晶格热导率最小;当碳纳米管的含量为3%时,本研究得到的Ba0.3FeCo3Sb12/碳纳米管复合材料的最大ZT值达0.78.  相似文献   

6.
通过原位聚合法制备了聚(2,5-二丁氧基)对苯乙炔/多壁碳纳米管(PDBOPV/MWCNTs)复合材料.红外光谱和拉曼光谱证实了在MWCNTs表面的包覆层为PDBOPV.高分辨透射电子显微镜观察发现,PDBOPV/MWCNTs复合材料直径为35—45 nm,其中PDBOPV包覆层厚度约为15 nm.紫外—可见吸收光谱表明随着MWCNTs含量的增加,PDBOPV/MWCNTs的吸收发生红移且强度提高.荧光光谱研究表明随着MWCNTs含量的增加,PDBOPV/MWCNTs的最大发射波长发生蓝移且强度减小,MWCNTs与PDBOPV之间形成了光致电子转移体系,使得π电子离域程度增加,并且导致荧光量子效率降低.根据Eg与入射光子能量的关系,拟合了PDBOPV/MWCNTs薄膜的光学禁带宽度,发现随着MWCNTs的增加,Eg逐步减小.采用简并四波混频方法测试它们的三阶非线性极化率χ(3),结果发现随着MWCNTs含量的增加,PDBOPV/MWCNTs复合体的非线性光学响应逐渐增强,这说明PDBOPV与MWCNTs之间形成了分子间光致电子转移体系,产生了复杂的分子间π-π电子非线性运动. 关键词: 聚(2 5-二丁氧基)对苯乙炔 多壁碳纳米管 复合材料 光致发光  相似文献   

7.
苏贤礼  唐新峰  李涵  邓书康 《物理学报》2008,57(10):6488-6493
用熔融退火结合放电等离子烧结(SPS)技术制备了具有不同Ga填充含量的GaxCo4Sb12方钴矿化合物,研究了不同Ga含量对其热电传输特性的影响规律. Rietveld结构解析表明,Ga占据晶体学2a空洞位置,Ga填充上限约为0.22,当Ga的名义组成x≤0.25时,样品的电导率、室温载流子浓度Np随Ga含量的增加而增加,Seebeck系数随Ga含量的增加而减小. 室温下霍尔测试表明,每一个Ga授予框架0.9个电子,比Ga的氧化价态Ga3+小得多. 由于Ga离子半径相对较小,致使Ga填充方钴矿化合物的热导率κ及晶格热导率κL较其他元素填充的方钴矿化合物低. 当x=0.22时对应的样品在300K时的热导率和晶格热导率分别为3.05Wm-1·K-1和 2.86Wm-1·K-1.在600K下Ga0.22Co4.0Sb12.0样品晶格热导率达到最小,为1.83Wm-1·K-1,最大热电优值Z,在560K处达1.31×10-3K-1. 关键词: skutterudite化合物 Ga原子填充 结构 热电性能  相似文献   

8.
罗派峰  唐新峰  熊聪  张清杰 《物理学报》2005,54(5):2403-2408
用两步固相反应法合成了p型Ba填充方钴矿化合物Ba0.3FeCo3S b12,并采用放电等离子烧结法(SPS)制备了Ba0.3FeCo3Sb12/多壁碳纳米管复合材料. 研究了Ba0.3FeCo3Sb12/多壁碳纳米管复合 材料的结构及多壁碳纳米管对 其热电性能的影响规律:SEM分析表明多壁碳纳米管比较均匀地分布在Ba0.3 FeCo3S b12基体中;随着碳纳米管添加量的增加,Ba0.3FeCo3Sb12/多壁碳 纳米管复合材料的电导率下降、塞贝克系数略微下降、晶格热导率大幅度降低,当碳纳米管 含量为5%时其晶格热导率最小;当碳纳米管的含量为3%时,本研究得到的Ba0.3FeCo3Sb12/碳纳米管复合材料的最大ZT值达078.  相似文献   

9.
给出了3ω法测试系统中描述薄膜表面加热/测温膜中温度波动的级数形式解,并将复数温度波动的实部和虚部分开表示.利用该解分析了交流加热频率、加热膜宽度和材料热物性的组合参数对加热膜温度波动幅度的影响.并根据此解对测量原理的数学模型进行了修正,建立了相应的3ω测试系统,首先测定了厚度为500 nm SiO2薄膜的导热系数,验证了实验系统的合理性.加大了测试频率,利用级数模型在高频段直接得到SiO2薄膜的导热系数,结合低频段的数据同时确定了Si基体的导热系数.利用级数解分析测试了激光晶体Nd:YAG〈111〉面上多层ZrO2/SiO2增透膜的导热系数,测试的ZrO2薄膜的导热系数比体材料小.进行了不确定度分析.结果表明,提出的分析方法可以有效研究微器件表面薄膜结构的导热性能. 关键词: ω法')" href="#">3ω法 微/纳米薄膜 导热系数 微尺度加热膜  相似文献   

10.
N掺杂锐钛矿TiO2光学性能的第一性原理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
彭丽萍  徐凌  尹建武 《物理学报》2007,56(3):1585-1589
用平面波赝势方法(PWP)计算了N掺杂锐钛矿型TiO2前后的光学特性,即介电函数虚部ε2(ω),光学吸收系数I(ω)和反射率R(ω). 并从能带结构上解释了为什么掺N后锐钛矿型TiO2的光学谱在2.93,3.56和3.97eV处相对掺杂前会出现3个峰值的原因. 从光谱图上分析得出,掺杂后TiO2要发生红移现象,实验现象证实了这一结果. 关键词: N掺杂 2')" href="#">锐钛矿型TiO2 光学性能 第一性原理  相似文献   

11.
Guanghui Yuan  Jiming Xiang 《Ionics》2013,19(10):1449-1453
A novel sulfur/multiwalled carbon nanotube nanocomposite (S/MWCNT) was prepared by a facile quasi-emulsion template method in an O/W system. Transmission and scanning electronic microscopy show the formation of a highly developed core–shell tubular structure consisting of S/MWCNT composite with uniform sulfur coating on its surface. The homogenous dispersion and integration of MWCNT in the S/MWCNT composite create a highly conductive and mechanically flexible framework, enhancing the electronic conductivity and consequently the rate capability of the material. The S/MWCNT composite cathode could deliver a stable discharge (the fifth cycle) capacity of about 903 mAh g?1 at 0.1 C, 751 mAh g?1 at 0.5 C, and 631 mAh g?1 at 1 C.  相似文献   

12.
It has been shown that a nanofluid consisting of nanoparticles dispersed in base fluid has much higher effective thermal conductivity than pure fluid. In this study, four kinds of nanofluids such as multiwalled carbon nanotube (MWCNT) in water, CuO in water, SiO2 in water, and CuO in ethylene glycol, are produced. Their thermal conductivities are measured by a transient hot-wire method. The thermal conductivity enhancement of water-based MWCNT nanofluid is increased up to 11.3% at a volume fraction of 0.01. The measured thermal conductivities of MWCNT nanofluids are higher than those calculated with Hamilton–Crosser model due to neglecting solid–liquid interaction at the interface. The results show that the thermal conductivity enhancement of nanofluids depends on the thermal conductivities of both particles and the base fluid.  相似文献   

13.
High-density polyethylene (HDPE) composites reinforced with multiwalled carbon nanotubes (MWCNTs) and nano-silicon dioxide (SiO2) fillers were evaluated for flame retardancy and thermal properties for cable and wire applications. In this study, the filler percentages of MWCNT and nano-SiO2 have varied from 0 to 5 wt% in HDPE composite with polyethylene-grafted glycidyl methacrylate compatibilizer and 3-aminopropyl triethoxy silane coupling agent. Addition of MWCNT’s and nano-SiO2 to the HDPE composite is observed to enhance the limiting oxygen index and char formation. Cone calorimeter results also show a 53% reduction in the peak heat release rate of the HDPE composite with 5 wt% of MWCNT. The existence of synergism between the uniformly dispersed MWCNT and nano-SiO2 has been verified using Finite Element Method (FEM)-based thermal simulations.  相似文献   

14.
To study the effect of vibration field on the electrical conductivity properties of nanocomposites, isotactic polypropylene (iPP)/multiwalled carbon nanotubes (MWCNT) composites were prepared by conventional injection molding and vibration injection molding. Results showed that the electrical conductivity of iPP/MWCNT composites was significantly promoted by vibration injection molding. Vibration injection molded samples had a percolation threshold of about 2.7 wt% compared with the threshold of about 4.5 wt% for conventional injection molded samples. The effects of test locations and vibration frequency on the electrical conductivity of composites were investigated. The samples exhibited an inhomogeneity along the injection direction. The electrical conductivity of the samples was different at different test locations and increased with increasing vibration frequency. Polarized light microscopy (PLM) results indicated that vibration injection molding can induce MWCNT aggregates to be stretched and oriented along the flow direction, which could form conductive networks and greatly enhance the electrical conductivity of iPP/MWCNT composites.  相似文献   

15.
Linear viscoelastic properties and dielectric behavior of poly(1‐butene)/multiwalled carbon nanotube (MWCNT) nanocomposites were investigated. Dynamic mechanical analysis showed significant increase in storage modulus in the rubbery regime. The tan δ peak temperature remained constant; however, the peak intensity was lowered for the nanocomposites. In melt rheological studies the nanocomposites showed a shift in crossover frequency to the lower side, suggesting delayed relaxation of the molecular chains in the presence of MWCNT and this shift was found to depend on the content of MWCNT. The dielectric constant increased from 2.2 to 70 for the nanocomposite with 7 wt. % MWCNT. The electrical conductivity increased significantly, from 10?15 to 10?3 S/cm. The results of rheology and dielectric studies indicate that a percolation network is formed that is responsible for the observed changes.  相似文献   

16.
《Composite Interfaces》2013,20(4):301-318
Polyacrylamide (PAM) doped by multiwalled carbon nanotube (MWNT) gels were prepared with different amounts of MWNTs varying in the range between 0.1 and 15 wt%. The PAM–MWNT composite gels were characterized by the steady state fluorescence technique (SSF). The alternative electrical conductivity (AC) of PAM–MWNT composite gels was measured by the dielectric spectroscopy technique. Observations around the gel point, t gel for PAM–MWNTs composite gels showed that the gel fraction exponent β obeyed the percolation result. The critical exponent r of AC electrical conductivity for the composite PAM–MWNT gel was also measured and found to be about 2.0, which agrees with a random resistor network.  相似文献   

17.
Effects of multiwall carbon nanotube (MWCNT) addition on the electrical conductivities, optical transparencies and fluorescence emissions of poly(vinyl acetate-co-butyl acrylate) (P(VAc-co-BuA))/MWCNT composite films were studied. Optical transmission, fluorescence emission and two point probe resistivity techniques were used to determine the variations of the optical, fluorescence and electrical properties of the composites, respectively. Transmitted photon intensity (I tr), fluorescence emission intensity (I fl) and surface resistivity (ρ s) of the composite films were monitored as a function of MWCNT mass fraction (M) at room temperature. All these measured quantities of the composites were decreased by increasing the content of MWCNT in the composite. The conductivity and the optical results were attributed to the classical and site percolation theories, respectively. The fluorescence results, however, possessed both the site and classical percolation theories at low and high MWCNT content regions, respectively.  相似文献   

18.
This article describes the preparation of multi-walled carbon nanotube (MWCNT) chalcogenide glass composite by the melt-quenching technique. MWCNT composite (Se80Te20)100?xAgx (0 ≤ x ≤ 4) bulk samples are characterized by the XRD, SEM and EDX. The electrical measurements were carried out in the temperature range of the 308-388 K. Cole–Cole plot has been used to determine the electrical conductivity at room temperature. It has been observed that MWCNT chalcogenide composite have higher value of electrical conductivity than pure glass. The results have been discussed on the basis of increased ionic conductivity (Ag+ ions) in MWCNT doped (Se80Te20)100?xAgx (0 ≤ x ≤ 4) bulk samples.  相似文献   

19.
In this work, syndiotactic polypropylene/multiwalled carbon nanotubes (MWCNT) nanocomposites, in various concentrations, were produced using melt mixing. The influence of the addition of MWCNT on the morphology, crystalline form, and the thermal and electrical properties of the polymer matrix was studied. To that aim, scanning electron microscopy, Raman spectroscopy, X-ray diffraction, differential scanning calorimetry, and dielectric relaxation spectroscopy were employed. Significant alterations of both the crystallization behavior and the thermal properties of the matrix were found on addition of the carbon nanotubes: conversion of the disordered crystalline form I to the ordered one, increase of the crystallization temperature and the degree of crystallinity, and decrease of the glass transition temperature and the heat capacity jump. Finally, the electrical percolation threshold was found between 2.5–3.0 wt.% MWCNT. For comparison purposes, the results of the system studied here are also correlated with the findings from a previous work on the isotactic polypropylene/MWCNT system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号