首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The complexes M(CO)2(PPh3)3 (I, M = Fe; II, M = Ru) readily react with H2 at room temperature and atmospheric pressure to give cis-M(H)2(CO)2(PPh3)2 (III, M = Fe;IV,M = Ru). I reacts with O2 to give an unstable compound in solution, in a type of reaction known to occur with II which leads to cis-Ru(O2)(CO)2(PPh3)2(V). Even compound IV reacts with O2 to give V with displacement of H2; this reaction has been shown to be reversible and this is the first case where the displacement of H2 by O2 and that of O2 by H2 at a metal center has been observed. III and IV are reduced to M(CO)3(PPh3)2 by CO with displacement of H2; Ru(CO)3- (PPh3)2 is also formed by treatment of IV with CO2, but under higher pressure. Compounds II and IV react with CH2CHCN to give Ru(CH2CHCN)(CO)2- (PPh3)2(VI) which reacts with H2 to reform the hydride IV.cis-Ru(H)2(CO)2(PPh3)2(IV) has been studied as catalyst in the hydrogenation and isomerization of a series of monoenes and dienes. The catalysts are poisoned by the presence of free triphenylphosphine. On the other hand the ready exchange of H2 and O2 on the “Ru(CO)2(PPh3)2” moiety makes IV a catalyst not irreversibly poisoned by the presence of air. It has been found that even Ru(CO)2(PPh3)3(II) acts as a catalyst for the isomerization of hex-1-ene at room temperature under an inert atmosphere.  相似文献   

2.
Ferrocene, cymantrene and methylcymantrene react with BI3, BBr3, C6H5BI2 and CH3BI2 in boiling CS2 or C6H12 forming air-sensitive metallocenylhaloboranes. The direct dichloroborylation is only possible with ferrocene. Starting from metallocenyliodoboranes the corresponding substituted metallocenylboranes are obtained by halogen exchange with AsF3 or AsCl3, by methylation with Sn(CH3)4, by ether cleavage of (C2H5)2O, by redox reaction with (CH3S)2 and by reaction with R2NH. 1H and 13C NMR spectra indicate that in contrast to cymantrenylhaloboranes, in ferrocenylhaloboranes the 3,4-protons are more deshielded than the 2,5-protons. The metallocenylboranes, isoelectronic with α-metallocenylcarbenium ions, are weaker Lewis acids than phenylboranes; they form donor-acceptor compounds with pyridine and dimethylsulfane, respectively.  相似文献   

3.
Synthesis and Crystal Structures of the Phosphaneimine Complexes [Cu(μ-HNPEt3)]4(O3S–CF3)4 and [Pt2Me6(μ-I)2(μ-HNPMe3)] The title compounds have been prepared by the reaction of copper(I)triflate with [NiBr(NPEt3)]4 in CH2Cl2 suspension in the presence of water, and by the reaction of [PtMe3I]4 with Me3SiNPMe3 in boiling toluene in the presence of cesium fluoride, respectively. According to the crystal structure determinations the cation of the copper complex forms tetrameric units [Cu(HNPEt3)]44+ with S4 symmetry with Cu–N bond lengths of 191.6 and 192.1 pm. In the platinum complex the platinum atoms are linked by two μ-I bridging atoms as well as by the μ-N atom of the HNPMe3 ligand with Pt–N bond lengths of 228.1 and 229.5 pm.  相似文献   

4.
Crosslinks are introduced by γ irradiation into 1,2-polybutadiene while strained in uniaxial extension near Tg with stretch ratio λ0, thereby trapping a proportion of the entanglements originally present. The stress at any subsequent strain λ is accurately given by the sum σN + σx, where σN is the stress contributed by a trapped entanglement network with λ = 1 as reference and a Mooney–Rivlin stress-strain relation, and σx is that contributed by a crosslink network with λ = λ0 as reference and neo-Hookean stress-strain relation. The birefringence is accurately given as δn = ?NσN + ?xσx, where the ?'s are the respective stress-optical coefficients. From measurements at λ = λ0 where σx = 0, ?N can be determined separately. For polymer with 88% 1,2 microstructure, ?N and ?x are nearly equal and independent of irradiation dose, though strongly dependent on temperature. For polymer with (95–96)% 1,2, ?N and ?x are different (even opposite in sign) and dependent on dose. This behavior is associated with a side reaction of cyclization by the γ irradiation, which is inhibited by the 1,4 moiety in the polymer with lesser 1,2 content. It is responsible for residual birefringence in the state of ease (λ = λs) where σN = –σx and the stress is zero.  相似文献   

5.
The synthesis of the TiMgCl5(OOCCH2Cl) · (ClCH2COOC2H5)3 adduct, obtained by reacting TiCl4 with a solution of MgCl2 in dry ClCH2COOC2H5, is reported together with its molecular and crystal structure as determined by x-ray diffraction. The structure was solved by direct and Fourier methods and refined by least-squares techniques to R = 0.057 for 1318 independent observed reflections. Crystals are monoclinic, space-group P21/c, with 4 formula units in a unit-cell of dimensions a = 10.480(4), b = 19.641(9), c = 16.597(6) Å, β = 120.21(5)°. The titanium(IV) atom is octahedrally coordinated by five chlorine atoms and an oxygen atom of a OOCCH2Cl residue. The magnesium atom is similarly coordinated by two chlorine atoms, the carbonyl oxygen atoms of three ClCH2COOC2H5 molecules and an oxygen atom of the OOCCH2Cl residue. The two octahedra share an edge by a double chlorine bridge between the magnesium and the titanium atoms and are also connected by the COO group of the OOCCH2Cl residue. Changes in the configurations and dimensions with respect to the free acceptor and donor molecules are discussed.  相似文献   

6.
Tris(pentafluorophenyl)germanethiol, (C6F5)3GeSH (Ia), was obtained in good yield by heating the tris(pentafluorophenyl)germane with elemental sulphur or by the exchange between Et3GeSH and (C6F5)3GeBr. The reaction between sulphur and (C6F5)2GeH2 or C6F5GeH3 gives heterocyclic products with chains of alternating germanium and sulphur atoms in the cycles. The compounds [(C6F5)3Ge]2X (X = S, Se) were prepared by exchange reaction of (Et3Ge)2X with tris(pentafluorophenyl)germanium bromide and by reaction of chalcogens (S8, Se8) with hexakis(pentafluorophenyl)digermane. Ia reacts with diethylmercury affording (C6F5)3GeSHgEt. Insertion of elemental sulphur into the GeHg bond of bis[tris(pentafluorophenyl)germyl]mercury led to the thermally stable (C6F5)3GeSHgGe(C6F5)3.  相似文献   

7.
Methyl Metal Bis(trimethylsilyl)amido Derivatives of Aluminium, Gallium, and Arsenic MeAl[N(SiMe3)2]2 (Me ? CH3) has been prepared by the reaction of AlMe3 with HN(SiMe3)2 in a 1:2 molar ratio. The homologue Gallium compound (as well as the Aluminium derivative) is formed in good yields by the interaction of MeMcl2 (M = Al, Ga) with Li- and Na[N(SiMe3)2], respectively. MeAs[N(SiMe3)2]2 is formed by the reaction of AsCl3 and Na[N(SiMe3)2] in a 1:3 molar ratio. These colourless amido derivatives are monomeric in solution, they have been characterized by analyses, mass, n.m.r. (1H and 13C), and especially by i.r. and Raman spectra.  相似文献   

8.
An SR-modified Au cluster with a sub-nanometer size, Au11(S-4-NC5H4)3(PPh3)7 (1), has been synthesized by NaBH4 reduction of Au(S-py)(PPh3) or by reacting [Au9(PPh3)8](NO3)3 with HS-4-py in good yield. Its molecular structure has been elucidated by single crystal X-ray diffraction, and TEM observation has been achieved for the first time for this size of SR-modified Au clusters. The core structure is best described in terms of an incomplete icosahedron. CV measurements in CH2Cl2 have suggested that the cluster does not coagulate in solution with significant concentration.  相似文献   

9.
The analysis of complex mixtures of chlorinated paraffins (CPs) with short (SCCPs, C10–C13) and medium (MCCPs, C14–C17) chain lengths can be disturbed by mass overlap, if low resolution mass spectrometry (LRMS) in the electron capture negative ionization mode is employed. This is caused by CP congeners with the same nominal mass, but with five carbon atoms more and two chlorine atoms less; for example C11H1737Cl35Cl6 (m/z 395.9) and C16H2935Cl5 (m/z 396.1). This can lead to an overestimation of congener group quantity and/or of total CP concentration. The magnitude of this interference was studied by evaluating the change after mixing a SCCP standard and a MCCP standard 1+1 (S+MCCP mixture) and comparing it to the single standards. A quantification of the less abundant C16 and C17 congeners present in the MCCP standard was not possible due to interference from the major C11 and C12 congeners in the SCCPs. Also, signals for SCCPs (C10–C12) with nine and ten chlorine atoms were mimicked by MCCPs (C15–C17) with seven and eight chlorine atoms (for instance C10H12Cl10 by C15H24Cl8). A similar observation was made for signals from C15–C17 CPs with four and five chlorine atoms resulting from SCCPs (C10–C12) with six and seven chlorine atoms (such as C15H28Cl4 by C10H16Cl6) in the S+MCCP mixture. It could be shown that the quantification of the most abundant congeners (C11–C14) is not affected by any interference. The determination of C10 and C15 congeners is partly disturbed, but this can be detected by investigating isotope ratios, retention time ranges and the shapes of the CP signals. Also, lower chlorinated compounds forming [M+Cl] as the most abundant ion instead of [M-Cl] are especially sensitive to systematic errors caused by superposition of ions of different composition and the same nominal mass.  相似文献   

10.
Pulsed discharge plasma is typical oxidation technology for disposing organic compounds in aqueous solutions. When this electrical discharge plasma was applied in water, it may produce hydrogen peroxide (H2O2) without any catalyst or chemical agent. In order to increase H2O2 production by electrical discharge plasma in water, fine bubbles were introduced into the electrical discharge plasma in this experiment. Bipolar pulsed voltages were applied to cylindrical electrodes in the water while Ar or O2 bubbles were introduced, generating a pulsed discharge plasma. The introduction of the bubbles seemed to enhance the dissociation of water molecules and increased H2O2 formation, especially with O2 bubbling. Dissolved oxygen in the water contributed to H2O2 formation by pulsed discharge plasma with the bubbles, while dissociation of water molecules was the cause of H2O2 formation by pulsed discharge plasma without bubbles. More H2O2 was formed by pulsed discharge plasma with O2 bubbles, because the amount of dissolved oxygen in the water increased upon bubbling with O2.  相似文献   

11.
Ti7Cl16 and Ti7Br16 and Further Investigations with Titanium Halides. Al2X6 as a Complex Forming Agent TiCl3,s can be transported with Al2Cl6 via TiAlCl6,g in a temperature gradient. The equilibrium of this reaction was studied by mass spectroscopy. There is no indication of the existence of a TiAl2Cl9 molecule as assumed in the literature. β-TiBr3 was prepared from the elements in the presence of the transporting agent Al2Br6,g. The transport of TiCl2 with Al2Cl6,g involves, as an important step, the disproportionation which is favoured by the reaction of Ti with the glass wall. If the disproportionation is made impossible by addition of Ti the novel compound Ti7Cl16 is obtained. Independent of Ti7Cl16, a phase TiCl(2 + x) with a broad range of homogeneity exists. The compound Ti7Br16, being isostructural with Ti7Cl16, was also prepared. Results of magnetic measurements and observations on the thermal decomposition of the compounds are reported.  相似文献   

12.
The interaction of IR radiation with water clusters that have absorbed NO2 molecules is studied by the molecular dynamics method in terms of the polarizable model. Induced dipole moments of H2O and NO2 molecules diminish during the addition of one to six NO2 molecules to (H2O)50 cluster. The integral intensity of IR absorption by a system consisting of (NO2) i (H2O)50 heteroclusters with 1 ≤ i ≤ 6 decreases, whereas the power of heat emission rises as compared with an (H2O) n system. The decrease in the IR absorption and the increase in the IR emission by water clusters with the capture of NO2 molecules are nonmonotonic. The absorption of NO2 molecules by water clusters causes a noticeable reduction in the intensity of the first peak and the confluence of the fourth and fifth peaks in the Raman spectrum.  相似文献   

13.
Two isomers each of α-P4S2SeX2 and α-P4SSe2X2 (X=Cl, Br) have been identified by 31P-NMR spectroscopy in mixtures obtained from thermal reaction of PX3 and P4S1.4Se1.6. Systematic changes in chemical shifts and coupling constants with electronegativity of the ligand by exocyclic substitution and with alteration of the molecular geometry by the replacement of sulfur by selenium are reported.  相似文献   

14.
Syntheses of Compounds with M–N Bonds (M = Li, Ga, In) The adducts [GaCl3(HNiPr2)] ( 1 ) and [InCl3{HN(CH2Ph)2}2] ( 2 ) can be obtained by the reactions of the corresponding metal(III) halides with the amines. The In amide In(NcHex2)3 ( 3 ) can be formed by treatment of InCl3 with three equivalents of LiNcHex2. Reaction with four equivalents of LiNcHex2 leads to the same product. However, the treatment of InCl3 with four equivalents of LiN(CH2Ph)2 gives the desired metalate [Li(THF)4][In{N(CH2Ph)2}4] ( 4 ). From the corresponding reaction of InCl3 with LiNiPr2 no In‐containing product could be identified. Instead, the aggregate of LiCl with three units of LiNiPr2, [Li4(NiPr2)3(THF)4Cl] ( 5 ), was isolated. 1 – 4 were characterized by NMR, IR and MS techniques as well as by X‐ray structure determinations. According to them, 1 possesses a tetrahedrally coordinated Ga atom, at which two units of 1 are connected by hydrogen bridges to centrosymmetrical dimers. The In atoms in 2 have a trigonal‐bipyramidal coordination sphere; the amine molecules occupy the apical positions. The central metal atom in 3 and the anion of 4 exhibit trigonal‐planar and distorted tetrahedral environments, respectively. The novel structural motif in 5 is the Cl ion, only partly surrounded by Li+ ions in a strongly distorted trigonal‐bipyramidal fashion. The dominating angle amounts to 165.2(2)°.  相似文献   

15.
By heating in the air [HBW11O39]8− with [Rh2(CH3COO)4(H2O)2] in the excess of tungstate followed by crystallization in the presence of CsCl, a double salt of Cs8[6h-BW12O40][RhCl6]·5.5H2O is obtained and structurally characterized. Its crystal structure is determined by single crystal X-ray diffraction. The structure is ionic with Cs+ cations, [BW12O40]5 anions with the Keggin structure, and [RhCl6]3 octahedral anions.  相似文献   

16.
Syntheses and Crystal Structures of the Phosphaneimine Complexes MCl2(Me3SiNPMe3)2 with M = Zn and Co, and CoCl2(HNPMe3)2 The molecular complexes MCl2(Me3SiNPMe3)2 (M = Zn, Co) have been prepared by the reaction of the dichlorides of zinc and cobalt with Me3SiNPMe3 in CH3CN and CH2Cl2, respectively, whereas the complex CoCl2(HNPMe3)2 has been prepared by the reaction of CoCl2 with NaF in boiling acetonitrile in the presence of Me3SiNPMe3. All complexes were characterized by IR spectroscopy and by crystal structure determinations. The complexes MCl2(Me3SiNPMe3)2 crystallize isotypically. ZnCl2(Me3SiNPMe3)2: Space group P212121, Z = 4, 2677 observed unique reflections, R = 0.024. Lattice dimensions at ?70°C: a = 1243.6; b = 1319.0; c = 1464.7 pm. CoCl2(Me3SiNPMe3)2: Space group P212121, Z = 4, 3963 observed unique reflections, R = 0,071. Lattice dimensions at ?80°C: a = 1236.3; b = 1317.4; c = 1457.6 pm. CoCl2(HNPMe3)2 · CH2Cl2: Space group Pbca, Z = 8, 1354 observed unique reflections, R = 0.055. Lattice dimensions at ?80°C: a = 1247.3; b = 998.4; c = 2882.4 pm. All complexes have monomeric molecular structures, in which the metal atoms are coordinated in a distorted tetrahedral fashion by the two chlorine atoms and by the nitrogen atoms of the phosphaneimine molecules.  相似文献   

17.
Tetrameric [{RZn(NHNMe2)}4] (R = Me, Et), the first organometallic zinc hydrazides to be described, have been prepared by alkane elimination from dialkylzinc solutions and N,N‐dimethylhydrazine. They were characterised by 1H and 13C NMR and IR spectroscopy, mass spectrometry, elemental analysis and X‐ray crystallography. The compounds form asymmetric aggregates containing the novel Zn4N8 core; tetrahedra of Zn atoms bear the alkyl groups at Zn, with the triangular faces bridged by NHNMe2 substituents. The NH groups are connected to two Zn atoms, and the NMe2 groups to one. Hydrolysis of the compounds with water gives [(RZn)4(OH)(NHNMe2)3] as products, which also were characterised as described above. Higher yields of these hydroxo clusters were achieved in one‐pot syntheses by reaction of dialkylzinc solutions with mixtures of N,N‐dimethylhydrazine and water. They contain Zn4N6O cages, in which one hydroxide in the tetrameric hydrazides described above replaces one NHNMe2 group. Similar products can be prepared with alkoxy instead of hydroxy groups, in analogous one‐pot syntheses with alcohols. Alcoholysis of [EtZn(NHNMe2)]4 with methanol or ethanol gave zinc trishydrazide monoalkoxides, [(EtZn)4(OR)(NHNMe2)3] (R = Me, Et), which have constitutions analogous to the monohydroxides. The organozinc bishydrazide bisalkoxides [(MeZn)4(NHNMe2)2(OEt)2] and [(EtZn)4(NHNMe2)2(OEt)2] were obtained in one‐pot reactions from dialkylzinc solutions with mixtures of the hydrazine and alcohol, and their crystal structures, confirmed by spectroscopic methods in solution, show an unsymmetrical aggregation with the novel Zn4N4O2 cage structure.  相似文献   

18.
The neutral, mononuclear complex [ReO(mta)2Cl] (1) [Hmta?=?2-(methylmercapto)aniline] was prepared by reaction of trans-[ReOCl3(PPh3)2] with a twofold molar excess of Hmta in methanol. The oxo-bridged dimer (μ-O)[ReO(mta)2]2 (2) was synthesized by reacting [ReOCl3(PPh3)2] with a twofold excess of Hmta in a 9?:?1 acetone/water mixture. The compounds were characterized by spectroscopy and complex 1 also by X-ray crystallography. Complex 1 has a distorted octahedral geometry with the chloride coordinated trans to the oxo group, and with the chelating ligands in the equatorial plane in a cis-N cis-S configuration.  相似文献   

19.
Selective two-electron reduction of dioxygen (O2) to hydrogen peroxide (H2O2) has been achieved by two saddle-distorted N,N’-dimethylated porphyrin isomers, an N21,N’22-dimethylated porphyrin ( anti -Me2P ) and an N21,N’23-dimethylated porphyrin ( syn -Me2P ) as catalysts and ferrocene derivatives as electron donors in the presence of protic acids in acetonitrile. The higher catalytic performance in an oxygen reduction reaction (ORR) was achieved by anti -Me2P with higher turnover number (TON=250 for 30 min) than that by syn -Me2P (TON=218 for 60 min). The reactive intermediates in the catalytic ORR were confirmed to be the corresponding isophlorins ( anti -Me2Iph or syn -Me2Iph ) by spectroscopic measurements. The rate-determining step in the catalytic ORRs was concluded to be proton-coupled electron-transfer reduction of O2 with isophlorins based on kinetic analysis. The ORR rate by anti -Me2Iph was accelerated by external protons, judging from the dependence of the observed initial rates on acid concentrations. In contrast, no acceleration of the ORR rate with syn -Me2Iph by external protons was observed. The different mechanisms in the O2 reduction by the two isomers should be derived from that of the arrangement of hydrogen bonding of a O2 with inner NH protons of the isophlorins.  相似文献   

20.
Summary The Co(NH3)5[OC(NH2)2]3+ cation in aqueous acid reacts with chlorine and hypochlorous acid, with two sequential steps observed in each case. Rate constants for both steps show a first-order dependence on [oxidant], with k1/k2 always <20, but varying with the choice of reactant and acid. Rate constants with Cl2 as reactant are faster than with HOCl, possibly related to preferential attack by Cl+ compared with OCl on the bound urea. Competition by ions (HSO 4 , Cl or NO 3 ) measured by product analysis of reactions conducted in 1 M acid produced competition ratios R (R=[CoX]/[CoOH2][X]) which are similar to values determined with a range of leaving groups previously, indicating a mechanistic constancy. No formation of Co(NH3)5Cl2+ was observed in reactions conducted in H2SO4 or HNO3, implying that free Cl is not generated at the reaction site and captured by the metal ion. Electronic and vibrational spectra of the intermediate formed in the two stage reaction is indicative of a change from an O-bound to an N-bound ligand in forming that intermediate, although it cannot be a simple isomerization due to the dependence on [oxidant]. A possible mechanism is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号