首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We demonstrate a purely solvent-based approach to assembling CdSe nanorods into vertically aligned, hexagonally packed monolayers in solution. Nanorods were dispersed in a mixture of good solvent with high vapor pressure and bad solvent with low vapor pressure, and preferential evaporation of the good solvent led to ordered assembly under conditions of continuously decreasing solvent quality. No applied external bias, extensive control of drying conditions, exceptionally monodisperse nanoparticles, or high concentrations of additives were required. This clean and facile method yielded ordered nanorod sheets of up to 7.5 μm wide with potential use as active materials in unique applications.  相似文献   

2.
Poly(ethylene oxide)-covered CdSe nanorods were prepared and assembled in diblock copolymer templates by floating the block copolymer templates onto aqueous nanorod solutions. The assembly was enabled by consideration of the surface ligand coverage of the nanorods. Alkane-covered CdSe nanorods prepared by state-of-the-art techniques are not compatible with this assembly process. However, poly(ethylene oxide) (PEO)-functionalized CdSe nanorods were successfully used to assemble the nanorods into the channels and pores of diblock copolymer templates. Other water-dispersible CdSe nanorods, such as those covered with 11-mercaptoundecanoic acid (MUA), did not give the desired assemblies. These results are understood by considering the surface energies of the PEO-covered CdSe nanorods in this interfacial assembly process.  相似文献   

3.
采用水热法制备了具有闪锌矿和纤维锌矿结构的CdSe纳米棒. 纳米棒直径约为100 nm, 长度约为300 nm. 当外加电极电势为-0.6 V 时, 经聚3-氯噻吩[Poly(3-chlorothiophene), P3CT]修饰的CdSe纳米棒具有最大光电流, 并且CdSe/P3CT复合膜电极最高光电转换效率(IPCE)为13.5%, 低于CdSe纳米棒膜电极17.7%的最高IPCE. CdSe/P3CT复合膜电极中存在p-n异质结, p-n异质结的存在使得CdSe/P3CT复合膜电极在长波区(>410 nm)的IPCE整体高于CdSe纳米棒薄膜电极的IPCE.  相似文献   

4.
Best of both worlds : Reduction of an organometallic Co precursor on preformed CdSe nanorods yields two distinct semiconducting–magnetic heterostructures (see picture). The selective growth of Co on the tips of CdSe first gives nanosphere–nanorod dimers, which evolve into nanorod–nanorod structures. In the hybrid objects the magnetic properties of Co remain intact, while the luminescence properties of CdSe are affected but not completely quenched.

  相似文献   


5.
Highly luminescent colloidal nanocrystals have wide applications in bioimaging and various optoelectronic devices.Herein we report a facile and mild procedure by combining S2-treatment and binary ligand passivation,which can efficiently enhance the luminescent property of CdSe nanocrystals at room temperature.The photoluminescence quantum yield of as-treated CdSe nanocrystals exhibits drastic enhancement(e.g.,188 times for CdSe nanorods)after this dual-passivation treatment.The methodology proposed here can be applied to various CdSe nanocrystals,regardless of their sizes,shapes,and crystal structures.  相似文献   

6.
Three‐dimensional hierarchical TiO2 nanorods (HTNs) decorated with the N719 dye and 3‐mercaptopropionic or oleic acid capped CdSe quantum dots (QDs) in photoanodes for the construction of TiO2 nanorod‐based efficient co‐sensitized solar cells are reported. These HTN co‐sensitized solar cells showed a maximum power‐conversion efficiency of 3.93 %, and a higher open‐circuit voltage and fill factor for the photoanode with 3‐mercaptopropionic acid capped CdSe QDs due to the strong electronic interactions between CdSe QDs, N719 dye and HTNs, and the superior light‐harvesting features of the HTNs. An electrochemical impedance analysis indicated that the superior charge‐collection efficiency and electron diffusion length of the CdSe QD‐coated HTNs improved the photovoltaic performance of these HTN co‐sensitized solar cells.  相似文献   

7.
For the synthesis of colloidal ternary ZnCdSe nanorods, CdSe nanorods were first prepared under a mixture of tetradecylphosphonic acid/trioctylphosphine oxide surfactants at 250 degrees C, and then ZnSe shell layer was grown onto CdSe nanorods at 180 degrees C, forming CdSeZnSe core/shell nanorods. Green-yellow emitting ternary ZnCdSe nanorods were obtained by a subsequent alloying process at 270 degrees C for 1-3 h through the diffusion of Zn ions into CdSe nanorods. The photoluminescence quantum yield (QY) of ZnCdSe nanorods was 5%-10%, which is higher than that from pristine CdSe nanorods (0.6%). The QY of these alloy nanorods depends on the alloying time and is discussed in terms of compositional disorders and defects produced by the alloying process. The Raman and time resolved photoluminescence spectroscopies were used to understand the detailed alloying process from CdSeZnSe core/shell to ZnCdSe alloy nanorods.  相似文献   

8.
A single‐step reaction has been developed for colloidal quantum‐size silicon (Si) and germanium (Ge) nanorods. The nanorods are formed by solution–liquid–solid (SLS) growth from tin (Sn) seed particles prepared by in situ reduction of a molecular tin(II) complex by trisilane, the reactant for Si nanorod growth. Using the same procedure, Ge nanorods can be grown by including a diphenyl germane reactant. The nanorod length could be adjusted from several nanometers to more than a micrometer without significant increase of diameter by manipulating reactant concentrations.  相似文献   

9.
We report the synthesis and characterization of axial nanorod heterostructures composed of cadmium selenide (CdSe) and cadmium sulfide (CdS). The synthesis employs a solution-liquid-solid (SLS) mechanism with the assistance of bismuth nanocrystals adhered to a substrate (silicon or a III-V semiconductor). Transmission electron microscopy (TEM) and diffraction studies show that CdSe and CdS segments exhibit the wurtzite (hexagonal) crystal structure with <5% stacking faults. Both of these segments grow along the [002] direction with an epitaxial interface between them. Energy-dispersive X-ray (EDX) spectrometry using a high-resolution TEM operating in scanning mode confirms the alloy-free composition modulation in the nanorod heterostructures, showing that Se and S are localized in the CdSe and CdS portions of the nanorod heterostructures, respectively. This study demonstrates that SLS synthesis provides an alternate route to prepare axial nanorod heterostructures that have been difficult to generate using either vapor-liquid-solid growth or catalyst-free solution-phase synthesis.  相似文献   

10.
Colloidal CdSe nanoplatelets are considered to be excellent candidates for many applications in nanotechnology. One of the current challenges is to self‐assemble these colloidal quantum wells into large ordered structures to control their collective optical properties. We describe a simple and robust procedure to achieve controlled face‐to‐face self‐assembly of CdSe nanoplatelets into micron‐long polymer‐like threads made of up to ~1000 particles. These structures are formed by addition of oleic acid to a stable colloidal dispersion of platelets, followed by slow drying and re‐dispersion. We could control the average length of the CdSe nanoplatelet threads by varying the amount of added oleic acid. These 1‐dimensional structures are flexible and feature a “living polymer” character because threads of a given length can be further grown through the addition of supplementary nanoplatelets at their reactive ends.  相似文献   

11.
Synthesis of high quality zinc blende CdSe nanocrystals   总被引:1,自引:0,他引:1  
Highly homogeneous and luminescent CdSe colloidal nanocrystals in the less common zinc blende crystal structure have been obtained at high temperature in a noncoordinating organic solvent. The key parameter appears to be the addition of a phosphonic acid to the trioctylphosphine-selenium complex before its injection into the hot cadmium mixture, while the role of temperature is less relevant. Compared to standard (wurtzite) colloidal CdSe preparations, we find that the growth rate is considerably reduced, and the energy gap between the first two absorption bands becomes larger.  相似文献   

12.
The dynamics of exciton spin relaxation in CdSe nanorods of various sizes and shapes are measured by an ultrafast transient polarization grating technique. The measurement of the third-order transient grating (3-TG) signal utilizing linear cross-polarized pump pulses enables us to monitor the history of spin relaxation among the bright exciton states with a total angular momentum of F = +/-1. From the measured exciton spin relaxation dynamics, it is found that the effective mechanism of exciton spin relaxation is sensitive to the size of the nanorod. Most of the measured cross-polarized 3-TG signals show single-exponential spin relaxation dynamics, while biexponential spin relaxation dynamics are observed in the nanorod of the largest diameter. This analysis suggests that a direct exciton spin flip process between the bright exciton states with F = +/-1 is the dominant spin relaxation mechanism in small nanocrystals, and an indirect spin flip via the dark states with F = +/-2 contributes as the size of the nanocrystal increases. This idea is examined by simulations of 3-TG signals with a kinetic model for exciton spin relaxation considering the states in the exciton fine structure. Also, it is revealed that the rate of exciton spin relaxation has a strong correlation with the diameter, d, of the nanorod, scaled by the power law of 1/d4, rather than other shape parameters such as length, volume, or aspect ratio.  相似文献   

13.
Capillary assembly was explored for the precise placement of 25 nm × 70 nm colloidal gold nanorods on prestructured poly(dimethylsiloxane) template surfaces. The concentration of nanorods and cationic surfactant cetyltrimethylammonium bromide (CTAB), the template wettability, and most critically the convective transport of the dispersed nanorods were tuned to study their effect on the resulting assembly yield. It is shown that gold nanorods can be placed into arrayed 120-nm diameter holes, achieving assembly yields as high as 95% when the local concentration of nanorods at the receding contact line is sufficiently high. Regular arrays of gold nanorods have several benefits over randomly deposited nanorod arrangements. Each assembled nanorod resides at a precisely defined location and can easily be found for subsequent characterization or direct utilization in a device. The former is illustrated by collecting scattering spectra from single nanorods and nanorod dimers, followed by subsequent SEM characterization without the need for intricate registration schemes.  相似文献   

14.
Nanocrystalline cadmium selenide (CdSe) is a low bandgap material (E(g)=1.75 eV, at room temperature) with potential applications in photoelectronic devices. Its electronic properties are dependent on the dimensions of the crystals. In this study, one-dimensional wurtzite CdSe nanoparticles with a diameter of 43+/-6 nm and an aspect ratio of 3.7+/-0.6 were synthesized through a novel reverse micelle assisted hydrothermal method at a relatively low temperature. This method combines the advantages of the hydrothermal method's ability to achieve good crystallinity with the well-controlled growth offered by the reverse micelle method. The morphology of the nanoparticles can be controlled by the amount of sodium bis(2-ethylhexyl) sulfosuccinate (AOT), the amount of hydrazine hydrate and the reaction temperature. It is proposed that AOT controls the length while hydrazine hydrate controls the diameter of the growing nanocrystals. The photoluminescence (PL) of individual nanorods and the longitudinal-optical phonon properties were mapped using confocal microscopy. Raman spectroscopy showed a blue-shift of both the LO and 2LO phonon peaks which may be due to a lattice contraction of the CdSe nanorods. A nucleation and growth mechanism for these nanoparticles is also proposed based on time-dependent studies.  相似文献   

15.
Synthesis of monodisperse samples of CdSe nanorods with CdTe tips is achieved using the mechanism of rod nucleated growth to form CdSe/CdTe nanobarbells. This synthesis produces a nanocrystal displaying "type-II" behavior with a morphology that is particularly well suited for internal exciton separation and carrier transport.  相似文献   

16.
DNA molecules are useful building blocks and nanotemplates for controllable fabrication of various bioinorganic nanostructures due to their unique physical-chemical properties and recognition capabilities and the synthetic availability of desired nucleotide sequences and length. We have synthesized novel DNA complexes with positively charged, highly luminescent CdSe nanorods that can be self-organized into filamentary, netlike, or spheroidal nanostructures. DNA-CdSe-nanorod filaments possess strongly linearly polarized photoluminescence due to the unidirectional orientation of nanorods along the filaments.  相似文献   

17.
Spontaneous patterning of anisotropic nanostructures into ordered assemblies remains a challenging quest, which requires controlled innovative approaches. One way to achieve such ordering of 1D nanorods is by manipulating the varieties of interactions (attractive and repulsive forces) present in colloidal solutions of anisotropic nanocrystals. The other ingenuous pathway is solvent‐evaporation‐mediated self‐organization of the 1D nanorods. By following the second protocol, we have achieved exclusive pillar self‐assembled patterns of visible‐light‐emitting Mn‐doped ZnSe nanorods. The nanorods also exhibit intriguing vortex patterning observed by directional solvent evaporation from the nanorod solution. The effect of solvent evaporation to generate such unique morphologies on the TEM grid is discussed and the reported procedure to obtain the assembled patterns of visible‐light‐emitting, doped nanorods might be useful for future technological applications.  相似文献   

18.
Peng Q  Dong Y  Deng Z  Li Y 《Inorganic chemistry》2002,41(20):5249-5254
CdSe nanorods and dendritic fractals were synthesized through a novel controllable solution-phase hydrothermal method. Soluble selenite was employed to provide a highly reactive Se source in the synthesis. Both morphologies and phases of the CdSe products could be successfully controlled by choosing appropriate complexing agents to adjust the dynamics of the reaction process. Reaction temperature and Cd/Se ratio in raw materials were also important parameters influencing the morphologies and phases of the products. The phase structures, morphologies, and optical properties of the CdSe products were investigated by XRD, TEM, HRTEM, and UV-vis and photoluminescence spectroscopies. The formation mechanisms of the nanorods and fractals were investigated and discussed on the basis of the experimental results.  相似文献   

19.
A simple method of synthesizing nanomaterials and the ability to control the size and position of them are crucial for fabricating nanodevices. In this work, we developed a novel ammonia aqueous solution method for growing well-aligned ZnO nanorod arrays on a silicon substrate. For ZnO nanorod growth, a thin zinc metal seed layer was deposited on a silicon substrate by thermal evaporation. Uniform ZnO nanorods were grown on the zinc-coated silicon substrate in aqueous solution containing zinc nitrate and ammonia water. The growth temperature was as low as 60-90 degrees C and a 4-in. wafer size scale up was possible. The morphology of a zinc metal seed layer, pH, growth temperature, and concentration of zinc salt in aqueous solution were important parameters to determine growth characteristics such as average diameters and lengths of ZnO nanorods. We could demonstrate the discrete controlled growth of ZnO nanorods using sequential, tailored growth steps. By combining our novel solution method and general photolithography, we selectively grew ZnO nanorod arrays on a patterned silicon substrate. Our concepts on controlled ZnO nanorod growth using a simple solution method would be applicable for various nanodevice fabrications.  相似文献   

20.
Silver and gold nanorods with aspect ratios from 1 to 16 have been used as substrates for surface enhanced Raman spectroscopy (SERS) in colloidal solution. The nanorod aspect ratio is varied to give different degrees of overlap between the nanorod longitudinal plasmon band and excitation source in order to determine its effect on overall surface enhancement. Results suggest that enhancement factors are a factor of 10-10(2) greater for substrates that have plasmon band overlap with the excitation source than for substrates whose plasmon bands do not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号