首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G-quadruplex formation in the sequences 5'-(TTAGGG)(n) and 5'(TTAGGG)(n)TT (n = 4, 8, 12) was studied using circular dichroism, sedimentation velocity, differential scanning calorimetry, and molecular dynamics simulations. Sequences containing 8 and 12 repeats formed higher-order structures with two and three contiguous quadruplexes, respectively. Plausible structures for these sequences were determined by molecular dynamics simulations followed by experimental testing of predicted hydrodynamic properties by sedimentation velocity. These structures featured folding of the strand into contiguous quadruplexes with mixed hybrid conformations. Thermodynamic studies showed the strands folded spontaneous to contain the maximum number contiguous quadruplexes. For the sequence 5'(TTAGGG)(12)TT, more than 90% of the strands contained completely folded structures with three quadruplexes. Statistical mechanical-based deconvolution of thermograms for three quadruplex structures showed that each quadruplex melted independently with unique thermodynamic parmameters. Thermodynamic analysis revealed further that quadruplexes in higher-ordered structures were destabilized relative to their monomeric counterparts, with unfavorable coupling free energies. Quadruplex stability thus depends critically on the sequence and structural context.  相似文献   

2.
A tetranucleotide sequence d(GGGT) has been shown to self-assemble into an interlocking quadruplex dimer. UV-melting studies indicated the existence of two species that each showed distinct quadruplex melting transitions, a low-T(m) species, Q(l), and a high-T(m) species, Q(h). Conditions were controlled to favor the formation of either Q(l) or Q(h). Q(l) and Q(h) each showed circular dichroism spectra characteristic of parallel quadruplexes. Negative ion nano-electrospray ionization mass spectrometry confirmed that Q(l) was a tetrameric complex, d(GGGT)(4), and Q(h) was an octameric complex, d(GGGT)(8). High-resolution (1)H NMR spectroscopy evidenced that d(GGGT)(4) was a C(4)-symmetric parallel tetramolecular quadruplex. The (1)H NMR spectrum of d(GGGT)(8) was consistent with a structure formed by the dimerization of a parallel, "slipped" tetramolecular quadruplex that has its diagonal strands staggered by one base. This "slippage" results in two guanine bases at the 5' end of the quadruplex being presented diagonally that are not involved in tetrads. Two such "slipped" quadruplexes dimerize via these free G-bases at the 5' ends by forming an extra G-tetrad. Each "slipped" quadruplex contributes two guanine bases to this extra G-tetrad. The formation of a novel GTGT tetrad is also observed at both the 3' ends of the interlocked quadruplex dimer.  相似文献   

3.
DNA triplex and quadruplex structures have been successfully detected by electrospray ionization mass spectrometry (ESI-MS). Circular dichroism and UV-melting experiments show that these structures are stable in 150 mM ammonium acetate at pH 7 for the quadruplexes and pH 5.5 for the triplexes. The studied quadruplexes were the tetramer [d(TGGGGT)](4), the dimer [d(GGGGTTTTGGGG)](2), and the intramolecular folded strand dGGG(TTAGGG)(3), which is an analog of the human telomeric sequence. The absence of sodium contamination allowed demonstration of the specific inclusion of n - 1 ammonium cations in the quadruplex structures, where n is the number of consecutive G-tetrads. We also detected the complexes between the quadruplexes and the quadruplex-specific drug mesoporphyrin IX. MS/MS spectra of [d(TGGGGT)](4) and the complex with the drug are also reported. As the drug does not displace the ammonium cations, one can conclude that the drug binds at the exterior of the tetrads, and not between them. For the triplex structure the ESI-MS spectra show the detection of the specific triplex, at m/z values typically higher than those typically observed for duplex species. Upon MS/MS the antigene strand, which is bound into the major groove of the duplex, separates from the triplex. This is the same dissociation pathway as in solution. To our knowledge this is the first report of a triplex DNA structure by electrospray mass spectrometry.  相似文献   

4.
The design and synthesis of a series of bis‐indole carboxamides with varying amine containing side chains as G‐quadruplex DNA stabilising small molecules are reported. Their interactions with quadruplexes have been evaluated by means of Förster resonance energy transfer (FRET) melting analysis, UV/Vis spectroscopy, circular dichroism spectroscopy and molecular modelling studies. FRET analysis indicates that these ligands exhibit significant selectivity for quadruplex over duplex DNA, and the position of the carboxamide side chains is of paramount importance in G‐quadruplex stabilisation. UV/Vis titration studies reveal that bis‐indole ligands bind tightly to quadruplexes and show a three‐ to fivefold preference for c‐kit2 over h‐telo quadruplex DNA. CD studies revealed that bis‐indole carboxamide with a central pyridine ring induces the formation of a single, antiparallel, conformation of the h‐telo quadruplex in the presence and absence of added salt. The chirality of h‐telo quadruplex was transferred to the achiral ligand (induced CD) and the formation of a preferred atropisomer was observed.  相似文献   

5.
6.
Quadruplexes are higher-order structures formed by G-rich DNA strands that are involved in various processes of cell cycle regulation, such as control of telomere length and participation in gene regulation. Because of these central biological functions, quadruplex DNA represents a promising target for cancer therapy, e.g. by applying organometallic drugs, such as cisplatin. High-resolution electrospray tandem mass spectrometry is evaluated as a technique for exploring structural features of unplatinated and platinated quadruplexes. Results of experiments on tetramolecular, bimolecular and monomolecular quadruplexes provide information about the extent of platination and the binding sites of the drug. The dissociation behavior of the different types of quadruplexes is compared. Tetramolecular quadruplexes were found to weave out a strand end in order to provide a platination site, and their fragmentation is characterized by the release of an unplatinated strand and the formation of a platinated triplex. Partial opening of the structure in combination with the loss of small fragments leads to truncated quadruplex ions. For the bimolecular quadruplexes studied, strand separation is the predominant dissociation pathway. Depending on the loop sequence, cross-linking of the loops by cisplatin is demonstrated. Distinct differences in the product ion spectra of unannealed and annealed monomolecular sequences provide proof of quadruplex formation and show that platination preferentially occurs at the terminal regions.  相似文献   

7.
Nucleic acid molecules may fold into secondary structures, and the formation of such structures is involved in many biological processes and technical applications. The folding and unfolding rate constants define the kinetics of conformation interconversion and the stability of these structures and is important in realizing their functions. We developed a method to determine these kinetic parameters using an optical biosensor based on surface plasmon resonance. The folding and unfolding of a nucleic acid is coupled with a hybridization reaction by immobilization of the target nucleic acid on a sensor chip surface and injection of a complementary probe nucleic acid over the sensor chip surface. By monitoring the time course of duplex formation, both the folding and unfolding rate constants for the target nucleic acid and the association and dissociation rate constants for the target-probe duplex can all be derived from the same measurement. We applied this method to determine the folding and unfolding rate constants of the G-quadruplex of human telomere sequence (TTAGGG)(4) and its association and dissociation rate constants with the complementary strand (CCCTAA)(4). The results show that both the folding and unfolding occur on the time scale of minutes at physiological concentration of K(+). We speculate that this property might be important for telomere elongation. A complete set of the kinetic parameters for both of the structures allows us to study the competition between the formation of the quadruplex and the duplex. Calculations indicate that the formation of both the quadruplex and the duplex is strand concentration-dependent, and the quadruplex can be efficiently formed at low strand concentration. This property may provide the basis for the formation of the quadruplex in vivo in the presence of a complementary strand.  相似文献   

8.
Telomeres at the ends of human chromosomes contain the repeating sequence 5'-d[(TTAGGG)(n)]-3'. Oxidative damage of guanine in DNAs that contain telomeric and nontelomeric sequence generates 7,8-dihydro-8-oxoguanine (8OG) preferentially in the telomeric segment, because GGG sequences are more reactive in duplex DNA. We have developed a general strategy for probing site-specific oxidation reactivity in diverse biological structures through substitution of minimally modified building blocks that are more reactive than the parent residue, but preserve the parent structure. In this study, 8OG was substituted for guanine at G(8), G(9), G(14), or G(15) in the human telomeric oligonucleotide 5'-d[AGGGTTAG(8)G(9)GTT AG(14)G(15)GTTAGGGTGT]-3'. Replacement of G by 8OG in telomeric DNA can affect the formation of intramolecular G quadruplexes, depending on the position of substitution. When 8OG was incorporated in the 5'-position of a GGG triplet, G quadruplex formation was observed; however, substitution of 8OG in the middle of a GGG triplet produced multiple structures. A clear correspondence between structure and reactivity was observed when oligonucleotides containing 8OG in the 5'-position of a GGG triplet were prepared in the quadruplex or duplex forms and interrogated by mediated electrocatalytic oxidation with Os(bpy)(3)(2+) (bpy = 2,2'-bipyridine). The rate constant for one-electron oxidation of a single 8OG in the 5'-position of a GGG triplet was (6.2 +/- 1.7) x 10(4) M(-1) s(-1) in the G quadruplex form. The rate constant was 2-fold lower for the same telomeric sequence in the duplex form ((3.0 +/- 1.3) x 10(4) M(-1) s(-1)). The position of 8OG in the GGG triplet affects telomerase activity and synthesis of telomeric repeat products. Telomerase activity was decreased significantly when 8OG was substituted in the 5'-position of the GGG triplet, but not when 8OG was substituted in the middle of the triplet. Thus, biological oxidation of G to 8OG in telomeres has the potential to modulate telomerase activity. Further, small molecules that inhibit telomerase by stabilizing telomeric G quadruplexes may not be as effective under oxidative stress.  相似文献   

9.
Sequence inversion in G‐rich DNA from 5′→3′ to 3′→5′ exerts a substantial effect on the number of structures formed, while the type of G‐quadruplex fold is in fact determined by the presence of K+ or Na+ ions. The melting temperatures of G‐quadruplexes adopted by oligonucleotides with sequences in the 5′→3′ direction are higher than those of their 3′→5′ counterparts with both KCl and NaCl. CD, UV, and NMR spectroscopy demonstrates the importance of primary sequence for the structural diversity of G‐quadruplexes. The changes introduced by mere sequence reversal of the G‐rich DNA segment have a substantial impact on the polymorphic nature of the resulting G‐quadruplexes and their potential physiological roles. The insights resulting from this study should enable extension of the empirical rules for the prediction of G‐quadruplex topology.  相似文献   

10.
Isoguanine (2‐oxo‐6‐amino‐guanine), a natural but non‐standard base, exhibits unique self‐association properties compared to its isomer, guanine, and results in formation of different higher order DNA structures. In this work, the higher order structures formed by oligonucleotides containing guanine repeats or isoguanine repeats after annealing in solutions containing various cations are evaluated by electrospray ionization mass spectrometry (ESI‐MS) and circular dichroism (CD) spectroscopy. The guanine‐containing strand (G9) consistently formed quadruplexes upon annealing, whereas the isoguanine strand (Ig9) formed both pentaplexes and quadruplexes depending on the annealing cation. Quadruplex formation with G9 showed some dependence on the identity of the cation present during annealing with high relative quadruplex formation detected with six of ten cations. Analogous annealing experiments with Ig9 resulted in complex formation with all ten cations, and the majority of the resulting complexes were pentaplexes. CD results indicated most of the original complexes survived the desalting process necessary for ESI‐MS analysis. In addition, several complexes, especially the pentaplexes, were found to be capable of cation exchange with ammonium ions. Ab initio calculations were conducted for isoguanine tetrads and pentads coordinated with all ten cations to predict the most energetically stable structures of the complexes in the gas phase. The observed preference of forming quadruplexes versus pentaplexes as a function of the coordinated cation can be interpreted by the calculated reaction energies of both the tetrads and pentads in combination with the distortion energies of tetrads.  相似文献   

11.
Aptamer-based biosensors offer promising perspectives for high performance, specific detection of proteins. The thrombin binding aptamer (TBA) is a G-quadruplex-forming DNA sequence, which is frequently elongated at one end to increase its analytical performances in a biosensor configuration. Herein, we investigate how the elongation of TBA at its 5'?end affects its structure and stability. Circular dichroism spectroscopy shows that TBA folds in an antiparallel G-quadruplex conformation with all studied cations (Ba(2+), Ca(2+), K(+), Mg(2+), Na(+), NH(4)(+), Sr(2+) and the [Ru(NH(3))(6)](2+/3+) redox marker) whereas other structures are adopted by the elongated aptamers in the presence of some of these cations. The stability of each structure is evaluated on the basis of UV spectroscopy melting curves. Thermal difference spectra confirm the quadruplex character of all conformations. The elongated sequences can adopt a parallel or an antiparallel structure, depending on the nature of the cation; this can potentially confer an ion-sensitive switch behavior. This switch property is demonstrated with the frequently employed redox complex [Ru(NH(3))(6)](3+), which induces the parallel conformation at very low concentrations (10 equiv per strand). The addition of large amounts of K(+) reverts the conformation to the antiparallel form, and opens interesting perspectives for electrochemical biosensing or redox-active responsive devices.  相似文献   

12.
PNA-DNA chimeras present the interesting properties of PNA, such as the high binding affinity to complementary single-strand (DNA or RNA), and the resistance to nuclease and protease degradation. At the same time, the limitations of an oligomer containing all PNA residues, such as low water solubility, self-aggregation, and low cellular uptake, are effectively overcome. Further, PNA-DNA chimeras possess interesting biological properties as antisense agents. We have explored the ability of PNA-DNA chimeric strands to assemble in quadruplex structures. The rate constant for association of the quadruplexes and their thermodynamic properties have been determined by CD spectroscopy and differential scanning calorimetry (DSC). Thermal denaturation experiments indicated higher thermal and thermodynamic stabilities for chimeric quadruplexes in comparison with the corresponding unmodified DNA quadruplex. Singular value decomposition analysis (SVD) suggests the presence of kinetically stable intermediate species in the quadruplex formation process. The experimental results have been discussed on the basis of molecular dynamic simulations. The ability of PNA-DNA chimeras to form stable quadruplex structures expands their potential utility as therapeutic agents.  相似文献   

13.
G‐rich nucleic acid sequences with the potential to form G‐quadruplex structures are common in biologically important regions. Most of these sequences are present with their complementary strands, so the development of a sensitive biosensor to distinguish G‐quadruplex and duplex structures and to determine the competitive ability of quadruplex to duplex structures has received a great deal of attention. In this work, the interactions between two triphenylmethane dyes (malachite green (MG) and crystal violet (CV)) and G‐quadruplex, duplex, or single‐stranded DNAs were studied by fluorescence spectroscopy and energy‐transfer fluorescence spectroscopy. Good discrimination between quadruplexes and duplex or single‐stranded DNAs can be achieved by using the fluorescence spectrum of CV or the energy‐transfer fluorescence spectra of CV and MG. In addition, by using energy‐transfer fluorescence titrations of CV with G‐quadruplexes, the binding‐stoichiometry ratios of CV to G‐quadruplexes can be determined. By using the fluorescence titrations of G‐quadruplex–CV complexes with C‐rich complementary strands, the fraction of G‐rich oligonucleotide that engages in G‐quadruplex structures in the presence of the complementary sequence can be measured. This study may provide a simple method for discrimination between quadruplexes and duplex or single‐stranded DNAs and for measuring G‐quadruplex percentages in the presence of the complementary C‐rich sequences.  相似文献   

14.
The interaction of G-quadruplex DNA with the macrocyclic compound BOQ1, which possesses two dibenzophenanthroline (quinacridine) subunits, has been investigated by a variety of methods. The oligonucleotide 5'-A(GGGT(2)A)(3)G(3), which mimics the human telomeric repeat sequence and forms an intramolecular quadruplex, was used as one model system. Equilibrium binding constants measured by biosensor surface plasmon resonance (SPR) methods indicate a high affinity of the macrocycle for the quadruplex conformation (K > 1 x 10(7) M(-)(1)) with two equivalent binding sites. The affinity of BOQ1 for DNA duplexes is at least 1 order of magnitude lower. In addition, the macrocycle is more selective than the monomeric control compound (MOQ2), which is not able to discriminate between the two DNA structures (K(duplex) approximately K(quadruplex) approximately 10(6) M(-)(1)). Strong binding of BOQ1 to G4 DNA sequences was confirmed by fluorometric titrations with a tetraplex-forming oligonucleotide. Competition dialysis experiments with a panel of different DNA structures, from single strands to quadruplexes, clearly established the quadruplex binding specificity of BOQ1. Fluorescence resonance energy transfer (FRET) T(m) experiments with a doubly labeled oligonucleotide also revealed a strong stabilization of the G4 conformation in the presence of BOQ1 (DeltaT(m) = +28 degrees C). This DeltaT(m) value is one of the highest values measured for a G-quadruplex ligand and is significantly higher than observed for the monomer control compounds (DeltaT(m) = +10-12 degrees C). Gel mobility shift assays indicated that the macrocycle efficiently induces the formation of G-tetraplexes. Strong inhibition of telomerase was observed in the submicromolar range (IC(50) = 0.13 microM). These results indicate that macrocycles represent an exciting new development opportunity for targeting DNA quadruplexes.  相似文献   

15.
核酸中富含短的G-碱基重复的序列可以形成一种复杂的高级结构,称为G-四链体(G-quadruplex).在基因组中,借助生物信息学发现这类富G序列广泛分布在基因的启动子区,特别是那些参与到复制中去的基因,例如癌基因.同时发现这类序列在mRNA的5′非翻译区(5′UTR)也广泛存在.这类序列在染色体末段端粒部位的存在及功能已得到充分阐明.已知端粒富含G-碱基序列,其3′末端以单链状态存在,这使得在一些小分子的选择性作用下端粒序列很容易形成G-四链体结构,进而破坏端粒结构,影响端粒酶活性.已知端粒酶在超过85%的肿瘤中过量表达,因此,端粒酶已经成为抗癌药物设计的特殊靶点,是目前本领域的研究热点之一.已发现系列配体通过有效抑制端粒酶而表现高的抗肿瘤活性.本文主要综述了近年来端粒G-四链体分子识别及其药物靶向的最新进展,并对其作用机理做了进一步的分析和探讨.  相似文献   

16.
While is it well known that human telomeric DNA sequences can adopt G‐quadruplex structures, some promoters sequences have also been found to form G‐quadruplexes, and over 40% of promoters contain putative G‐quadruplex‐forming sequences. Because UV light has been shown to crosslink human telomeric G‐quadruplexes by cyclobutane pyrimidine dimer (CPD) formation between T's on adjacent loops, UV light might also be able to photocrosslink G‐quadruplexes in promoters. To investigate this possibility, 15 potentially UV‐crosslinkable G‐quadruplex‐forming sequences found in a search of human DNA promoters were UVB irradiated in vitro, and three were confirmed to have formed nonadjacent CPDs by mass spectrometry. In addition to nonadjacent T=T CPDs found in human telomeric DNA, a nonadjacent T=U CPD was discovered that presumably arose from deamination of a nonadjacent T=C CPD. Analysis of the three sequences by circular dichroism, melting temperature analysis and chemical footprinting confirmed the presence of G‐quadruplexes that could explain the formation of the nonadjacent CPDs. The formation of nonadjacent CPDs from the sequences in vitro suggests that they might be useful probes for the presence of non‐B DNA structures, such as G‐quadruplexes, in vivo, and if they were to form in vivo, might also have significant biological consequences.  相似文献   

17.
It has been shown that the DNA aptamer d(G(2)T(2)G(2)TGTG(2)T(2)G(2)) adopts an intramolecular G-quadruplex structure in the presence of K+. Its affinity for trombin has been associated with the inhibition of thrombin-catalyzed fibrin clot formation. In this work, we used a combination of spectroscopy, calorimetry, density, and ultrasound techniques to determine the spectral characteristics, thermodynamics, and hydration effects for the formation of G-quadruplexes with a variety of monovalent and divalent metal ions. The formation of cation-aptamer complexes is relatively fast and highly reproducible. The comparison of their CD spectra and melting profiles as a function of strand concentration shows that K+, Rb+, NH(4)+, Sr(2+), and Ba(2+) form intramolecular cation-aptamer complexes with transition temperatures above 25 degrees C. However, the cations Li+, Na+, Cs+, Mg(2+), and Ca(2+) form weaker complexes at very low temperatures. This is consistent with the observation that metal ions with ionic radii in the range 1.3-1.5 A fit well within the two G-quartets of the complex, while the other cations cannot. The comparison of thermodynamic unfolding profiles of the Sr(2+)-aptamer and K+ -aptamer complexes shows that the Sr(2+)-aptamer complex is more stable, by approximately 18 degrees C, and unfolds with a lower endothermic heat of 8.3 kcal/mol. This is in excellent agreement with the exothermic heats of -16.8 kcal/mol and -25.7 kcal/mol for the binding of Sr(2+) and K+ to the aptamer, respectively. Furthermore, volume and compressibility parameters of cation binding show hydration effects resulting mainly from two contributions: the dehydration of both cation and guanine atomic groups and water uptake upon the folding of a single-strand into a G- quadruplex structure.  相似文献   

18.
Guanine‐rich sequence motifs, which contain tracts of three consecutive guanines connected by single non‐guanine nucleotides, are abundant in the human genome and can form a robust G‐quadruplex structure with high stability. Herein, by using NMR spectroscopy, we investigate the equilibrium between monomeric and 5′–5′ stacked dimeric propeller‐type G‐quadruplexes that are formed by DNA sequences containing GGGT motifs. We show that the monomer–dimer equilibrium depends on a number of parameters, including the DNA concentration, DNA flanking sequences, the concentration and type of cations, and the temperature. We report on the high‐definition structure of a simple monomeric G‐quadruplex containing three single‐residue loops, which could serve as a reference for propeller‐type G‐quadruplex structures in solution.  相似文献   

19.
We describe the first G-quadruplex targeting approach that combines intercalation and hybridization strategies by investigating the interaction of a G-rich peptide nucleic acid (PNA) acridone conjugate 1 with a three-repeat fragment of the human telomere G 3 to form a hybrid PNA-DNA quadruplex that mimicks the biologically relevant (3+1) pure DNA dimeric telomeric quadruplex. Using a combination of UV and fluorescence spectroscopy, circular dichroism (CD), and mass-spectrometry, we show that PNA 1 can induce the formation of a bimolecular hybrid quadruplex even at low salt concentration upon interaction with a single-stranded three-repeat fragment of telomeric DNA. However, PNA 1 cannot invade a short fragment of B-DNA even if the latter contains a CCC motif complementary to the PNA sequence. These studies could open up new possibilities for the design of a novel generation of quadruplex ligands that target not only the external features of the quadruplex but also its central core constituted by the tetrads themselves.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号