共查询到18条相似文献,搜索用时 62 毫秒
1.
基于高光谱成像技术的番茄茎秆灰霉病早期诊断研究 总被引:3,自引:0,他引:3
共采集了112个番茄茎秆高光谱数据(光谱范围400~1 030 nm),结合图像处理和化学计量学方法建立了番茄茎秆灰霉病早期诊断模型。应用偏最小二乘法(PLS)模型的隐含变量载荷分布选取了七个特征波长(EW),并建立了番茄茎秆灰霉病早期诊断的最小二乘支持向量机(LS-SVM)模型。结果表明,经过变量标准化(SNV)及多元散射校正(MSC)预处理所建立的EW-LS-SVM模型获得了满意的判别效果,且优于全波段的PLS模型。说明高光谱成像技术进行番茄茎秆灰霉病的早期诊断是可行的,为番茄病害早期诊断和预警提供了新的方法。 相似文献
2.
水果新鲜度是反映水果是否新鲜、饱满的重要品质指标,为了探讨水果不同货架期的预测和判别方法,以酥梨为研究对象,利用高光谱成像技术,结合偏最小二乘判别法(PLS-DA)和偏最小二乘支持向量机(LS-SVM)算法对酥梨货架期进行判别。由光源、成像光谱仪、电控位移平台和计算机等构成的高光谱成像装置采集样品光谱,装置光源采用额定功率为200 W四个溴钨灯泡成梯形结构设计,光谱范围为1 000~2 500 nm,分别率为10 nm。选取优质酥梨30个,货架期设置为1, 5和10 d,对30个样品完成3次光谱图像的采集,并矫正原始图像。实验结果表明:基于图像的酥梨货架期定性分析时,对不同货架期样品的原始图像进行PCA压缩,得到三种不同货架期的权重系数数据,PC1图像提取特征波长点为1 280,1 390,1 800,1 880和2 300 nm,以特征图像的平均灰度值作为自变量且以货架期作为因变量建立定性判别模型,建模集68个,预测集22个。最小二乘支持向量机以RBF为核函数时,预测集中样品的误判个数为1,误判率为4.5%。而当采用lin核函数时,样品的误判个数为0,误判率为0。PLS-DA定性分析时RMSEC为1.24,Rc为0.93。RMSEP为1,Rp为0.96,预测集误判率为0。特征图像对酥梨货架期判别LS-SVM中的lin核函数所建立的模型结果较好,优于RBF核函数的建模效果,也优于PLS-DA判别模型。ENVI软件提取实验样品光谱后建立LS-SVM和PLS-DA判别模型,LS-SVM利用RBF和lin核函数误判率分别为4.5%和0。与RBF核函数相比,lin核函数所建立的模型预测酥梨货架期的效果更好。PLS-DA方法主成分因子数为12,RMSEC和RMSEP分别为0.48和0.78,Rc和Rp分别为0.99和0.97,建模集与预测集的误判率均为零。LS-SVM中的lin核函数所建立的模型结果较好,依然优于PLS所建立的检测模型。酥梨的光谱信息结合LS-SVM可以实现对酥梨货架期的检测和判别。基于图像建立酥梨的货架期预测模型与光谱相比,都实现了酥梨货架期的判别,而特征图像法,选择区域较少流失部分信息,计算量小,建模结果相对略差。酥梨货架期的高光谱成像检测模型研究为消费者正确评价水果新鲜度提供了理论指导, 也为后期果水果货架期检测仪器的开发提供了技术支持。 相似文献
3.
基于高光谱成像技术的番茄叶片灰霉病早期检测研究 总被引:1,自引:0,他引:1
提出了独立软模式法(SIMCA)的番茄叶片灰霉病特征波段图像的提取,并通过多元线性回归法(MLR)提取波段融合图像,通过最小距离法获取番茄灰霉病患病信息的技术路线。利用680~740 nm波段的方差图像和建模能力参数提取的特征波段,并作为输入变量进行MLR分析,在0.5准确率阈值下,准确率均大于99%,说明特征波段可以实现番茄叶片灰霉病的检测,并利用MLR回归系数提取波段融合图像,通过最小距离法获取番茄灰霉病患病信息,结果表明所提出的方法具有很好的预测能力,为番茄灰霉病的早期检测提供了一种新方法,且大大降低了高光谱图像的数据处理时间。 相似文献
4.
高光谱图像信息的柑橘叶片光合色素含量分析技术研究 总被引:2,自引:0,他引:2
暗箱环境下采集柑橘叶片高光谱图像,采用阈值法提取整叶有效光谱信息区域的平均光谱,比对分析了柑橘叶片光谱信息不同预处理方法和光谱PLS、BPNN和LS-SVM预测模型对叶绿素a、叶绿素b和类胡萝卜素等光合色素含量的预测精度。结果显示,采用MSC对原始光谱进行预处理和LS-SVM建模对叶绿素a含量的预测效果较好,Rp达0.898 3,RMSEP为0.140 4;采用SNV光谱预处理和LS-SVM模型对叶绿素b含量的预测其Rp为0.912 3,RMSEP为0.042 6;采用MAS预处理和PLS模型对于类胡萝卜素含量预测的Rp和RMSEP分别为0.712 8和0.062 4。结果表明:采用高光谱图像信息可较好地进行柑橘叶片叶绿素a,叶绿素b和类胡萝卜素等光合色素含量的预测,为进一步研究柑橘叶片光合色素含量与组分构成的非损伤实时检测提供了依据。 相似文献
5.
半透射高光谱结合流形学习算法同时识别马铃薯内外部缺陷多项指标 总被引:2,自引:0,他引:2
针对马铃薯内外部缺陷多项指标难以同时识别的问题,提出了一种半透射高光谱成像技术采用流形学习降维算法与最小二乘支持向量机(LSSVM)相结合的方法,该方法可同时识别马铃薯内外部缺陷的多项指标。试验以315个马铃薯样本为研究对象,分别采集合格、外部缺陷(发芽和绿皮)和内部缺陷(空心)马铃薯样本的半透射高光谱图像,同时为了符合生产实际,将外部缺陷马铃薯的缺陷部位以正对、侧对和背对采集探头的随机放置方式进行高光谱图像采集。提取马铃薯样本高光谱图像的平均光谱(390~1 040 nm)进行光谱预处理,然后分别采用有监督局部线性嵌入(SLLE)、局部线性嵌入(LLE)和等距映射(Isomap)三种流形学习算法对预处理光谱进行降维,并分别建立基于纠错输出编码的最小二乘支持向量机(ECOC-LSSVM)多分类模型。通过分析和比较建模结果,确定SLLE为最优降维算法,SLLE-LSSVM为最优马铃薯内外部缺陷识别模型,该方法对测试集合格、发芽、绿皮和空心马铃薯样本的识别率分别达到96.83%,86.96%,86.96%和95%,混合识别率达到93.02%。试验结果表明:基于半透射高光谱成像技术结合SLLE-LSSVM的定性分析方法能够同时识别马铃薯内外部缺陷的多项指标,为马铃薯内外部缺陷的快速在线无损检测提供了技术参考。 相似文献
6.
不同波长提取方法的高光谱成像技术检测番茄叶片早疫病的研究 总被引:1,自引:0,他引:1
提出了基于连续投影算法(successive projections algorithm,SPA)、载荷系数法(x-loading weights,x-LW)和格拉姆-施密特正交(gram-schmidt orthogonalization,GSO)提取特征波长的高光谱成像技术检测番茄叶片早疫病的方法。首先获取380~1 023 nm波段范围内70个健康和70个染病番茄叶片的高光谱图像信息,然后提取健康和染病叶片感兴趣区域(region of interest, ROI)的光谱反射率值,建立番茄叶片早疫病的最小二乘-支持向量机(least squares-support vector machine,LS-SVM)鉴别模型,建模集和预测集的鉴别率都是100%。再通过SPA 、x-LW和GSO提取特征波长(effective wavelengths,EW),并建立EW-LS-SVM和特征波长-线性判别分析(ew-linear discriminant analysis,EW-LDA)鉴别模型。结果显示,每个模型的鉴别效果都很好,EW-LS-SVM模型中预测集的鉴别率都达到了100%,EW-LDA模型中预测集的鉴别率分别是100%, 100%和97.83%。基于SPA, x-LW和GSO所建模型的输入变量分别是4个(492,550,633和680nm),3个(631,719和747 nm)和2个(533和657 nm),较少的特征波长便于实时检测仪器的开发。结果表明,高光谱成像技术检测番茄叶片早疫病是可行的,SPA,x-LW和GSO都是非常有效的特征波长提取方法。 相似文献
7.
高光谱成像的土壤剖面水分含量反演及制图 总被引:2,自引:0,他引:2
传统土壤水分的获取方法仅可获得离散的土壤水分点位数据,难以获得剖面上精细且连续的水分含量分布图。研究了野外条件下利用近红外高光谱(882~1 709 nm)成像反演剖面土壤水分含量(SMC),并实现精细制图的可行性。研究剖面位于江苏省东台市,我们利用近红外高光谱成像仪对剖面进行了5天原位连续观测,共采集了280个土样用于烘干法测定SMC。原始高光谱图像经数字量化值(DN)校正、黑白校正、拼接、几何校正、剪切和掩膜等一系列预处理后,提取各采样点的平均光谱反射率。提取光谱(Raw)经吸光度[LOG10(1/R)],Savitzky-Golay平滑(SG)、一阶微分(FD)、二阶微分(SD)、多元散射校正(MSC)和标准正态变量(SNV)转换后,采用偏最小二乘回归(PLSR)和最小二乘支持向量机(LS-SVM)方法建立SMC预测模型,并对比分析不同光谱预处理方法与建模方法组合条件下SMC的预测精度。结果表明,光谱反射率随SMC增加逐渐降低,不同光谱预处理方法的预测精度有所差异,除MSC方法外,同一光谱预处理方法的LS-SVM模型预测精度均高于PLSR模型,并且基于LOG10(1/R)光谱的LS-SVM模型对SMC预测精度最高,其建模集的决定系数(R2c)和均方根误差(RMSEc)分别为0.96和0.65%,预测集的决定系数(R2p)、均方根误差(RMSEp)和相对分析误差(RPDp)分别为0.88,1.05%和2.88。利用最优模型进行剖面SMC的高空间分辨率精细制图,通过比较SMC反演图中提取的预测值与实测值关系发现预测精度较高(R2: 0.85~0.95, RMSE: 0.94%~1.02%),且两者在剖面中的变化趋势基本一致,说明SMC反演图不仅能很好地反映出土壤水分在整个剖面中毫米级的含量分布信息,也可反映出同一位置处不同天数间的含量差异。因此,利用近红外高光谱成像结合优化的预测模型,能够实现土壤剖面SMC的定量预测及精细制图,有助于快速、有效监测田间剖面土壤水分状况。 相似文献
8.
传统食品掺假分析多集中于检测特定已知或者怀疑可能存在的掺假物,然而由于掺假形式的多样性以及新的掺假物不断出现,使得传统检测方法具有局限性。目前,全蛋粉作为鲜蛋理想替代品掺假现象十分严重,然而不管是国内还是国外,其掺假检测都鲜有研究。因此,为了探索一种快速检测全蛋粉掺假的方法,研究尝试使用最近快速发展起来的具有绿色、无损等优点的高光谱技术来检测全蛋粉掺假的可行性。从不同地区收集不同品牌的鸡蛋全蛋粉,按不同比例分别掺入淀粉、大豆分离蛋白、麦芽糊精以及三种掺假物的混合物进行试验样品的制备。样品进行光谱采集后,采用ENVI软件选取感兴趣区域(ROI)后提取出平均光谱。根据获得的光谱数据建立全波段下支持向量机(SVM)模型进行掺假的判别并采用偏最小二乘回归(PLSR)模型建立全波段与掺假浓度之间的关系。结果显示,采用径向基核函数所建立的SVM模型,其分类的正确率达到90%以上,基于PLSR建立掺假模型实际值与预测值相关系数R2P均高于0.90。为了简化模型,采用回归系数法(RC)及连续投影法(SPA)提取特征波长,根据特征波长下的光谱数据建立RC-PLSR和SPA-PLSR模型,结果显示,经简化的模型依然具有良好的性能,说明使用高光谱技术来检测全蛋粉掺假是可行且高效的。 相似文献
9.
基于可见-近红外光谱和多光谱成像技术的梨损伤检测研究 总被引:3,自引:0,他引:3
提出了利用可见-近红外光谱技术和多光谱成像技术检测鸭梨损伤随时间及程度变化的新方法.利用可见-近红外光谱技术,分别结合偏最小二乘(panial least squares,PLS)和最小二乘支持向量机(least squares-support vector machine,LS-SVM)方法对鸭梨受损程度和受损天数进行预测.结果表明,两种方法在鸭梨损伤后期对损伤程度的判别均具有较好的效果;LS-SVM方法对鸭梨轻度损伤的损伤天数的预测精度较高,但重度损伤天数的预测效果不如PLS方法.然后利用多光谱图像预测鸭梨受损天数.研究发现,利用LS-SVM建立的模型预测效果较稳定,预测结果相关系数均在0.85左右.说明利用可见-近红外光谱分析技术和多光谱成像技术能够快速无损地检测出鸭梨的损伤程度及时间,为鸭梨检测提供了一种新方法. 相似文献
10.
高光谱图谱融合检测羊肉中饱和脂肪酸含量 总被引:3,自引:0,他引:3
为探究高光谱成像(400~1000 nm)对羊肉中饱和脂肪酸(SFA)含量检测的可行性,提出一种基于特征光谱信息和图像纹理特征融合的SFA含量预测模型,实现对羊肉中SFA含量的快速检测及分布可视化。利用分段阈值法构建掩膜图像,获取羊肉样本感兴趣区域(ROI),结合SPXY法对样本集进行划分并对相关光谱信息进行预处理,分别采用连续投影算法(SPA)、变量组合集群分析法(VCPA)和β权重系数法提取特征光谱;通过获取羊肉样本主成分图像,结合灰度共生矩阵(GLCM)算法提取图像纹理信息;分别对特征光谱、图像信息及图谱融合信息建立的偏最小二乘回归(PLSR)与最小二乘支持向量机(LS-SVM)预测模型进行对比分析。利用5种不同对原始光谱数据进行预处理,经SNV法预处理后的光谱其校正集与预测集相关系数分别为0.921和0.875,较原始光谱分别增加了0.001和0.04,均方根误差模型分别为0.244和0.268,较原始光谱模型分别减少了0.003和0.06;对SNV法预处理后的光谱数据进行特征波长提取,SPA法、VCPA法及β权重系数法分别提取出12,10和9个特征波长;获取羊肉样本的前5个主成分图像,选择所含信息量最多的第一主成分图像进行纹理特征提取,依次提取0,45°,90°和135°方向下的能量、熵、同质性和相关性共4个主要纹理特征。利用SPA法提取的特征波长建立的PLSR与LS-SVM模型性能较好,PLSR模型校正集与预测集相关系数分别为0.8849和0.8807,均方根误差分别为0.3001和0.2606;LS-SVM模型校正集与预测集相关系数分别为0.8987和0.8926,均方根误差分别为0.2767和0.2476;图谱信息融合模型中,PLSR模型校正集与预测集相关系数分别为0.9071和0.9078,较特征光谱模型分别增加了0.02和0.03,均方根误差分别为0.3269和0.2992,较特征光谱模型分别增加了0.03和0.04;LS-SVM模型校正集与预测集相关系数分别为0.9206和0.8946,较特征光谱模型分别增加了0.02和0.002,均方根误差分别为0.2519和0.2458,较特征光谱模型分别减少了0.02和0.002。光谱预处理中经SNV法处理后的光谱所建模型性能优于其他预处理方法;采用SPA法提取的12个特征波长简化了光谱模型,提高了模型性能,特征光谱建模的最优方法为SPA-LS-SVM;图谱信息融合模型较特征光谱模型,模型相关系数增加较少,表明图像纹理信息虽携带了部分有效信息,但这些信息与羊肉中SFA含量之间的相关性有待进一步研究。基于图谱信息融合模型的预测性能最优,其次为光谱信息模型。择优选取SPA-PLSR模型计算羊肉样本中每个像素点的SFA含量,利用伪彩色图直观表示了羊肉样本中SFA的含量分布。实现对羊肉样本SFA含量的无损检测及分布可视化表达。 相似文献
11.
应用高光谱图像光谱和纹理特征的番茄早疫病早期检测研究 总被引:5,自引:0,他引:5
提出了应用光谱和纹理特征的高光谱成像技术早期检测番茄叶片早疫病的方法。利用高光谱图像采集系统获取380~1 030 nm范围内71个染病和88个健康番茄叶片的高光谱图像,同时采用主成分分析法(PCA)对高光谱图像进行处理。选取染病和健康叶片感兴趣区域(region of interest, ROI)的光谱反射率值,同时分别从前8个主成分的每幅主成分图像的ROI中提取对比度(Contrast)、 相关性(Correlation)、 熵(Entropy)和同质性(Homogeneity)4个灰度共生矩阵的纹理特征值,再通过PCA和连续投影算法(SPA)结合最小二乘支持向量机(LS-SVM)构建番茄叶片早疫病的早期鉴别模型。建立的6个模型中,采用光谱反射率值的LS-SVM模型对番茄叶片早疫病的识别率最高,达到100%。结果表明,应用高光谱成像技术检测番茄叶片早疫病是可行的。 相似文献
12.
基于高光谱成像和判别分析的黄瓜病害识别 总被引:3,自引:0,他引:3
利用光谱成像技术(400~720 nm)识别黄瓜白粉病、角斑病、霜霉病、褐斑病和无病区域。构建高光谱图像采集系统进行样本图像的采集,预处理和光谱信息的提取。由于获得的原始光谱数据量很大,为了减少后续运算量,提高准确率,采用逐步判别分析和典型判别分析两种方法进行降维。逐步判别从55个波段中选择12个波段,典型判别从55个波段中提取2个典型变量。利用选择的光谱特征参数建立病害识别模型。逐步判别构建的模型对训练样本和测试样本的判别准确率分别为100%和94%,典型判别构建的模型对训练样本和测试样本的判别准确率均为100%。说明利用高光谱成像技术可以进行黄瓜病害的快速、准确识别,并为实现可见光谱范围内黄瓜病害的田间实时在线检测提供了可能。 相似文献
13.
基于高光谱成像技术的油菜叶片SPAD值检测 总被引:11,自引:0,他引:11
以油菜叶片为研究对象,利用高光谱成像技术,成功建立了叶绿素相对值SPAD值的预测模型。共采集了160个油菜叶片样本在380~1030 nm范围内的高光谱图像。选择500~900 nm之间的平均光谱作为油菜叶片样本的光谱。利用蒙特卡罗最小二乘法(monte carlo partial least squares, MC-PLS)剔除了13个异常样本,基于剩余的147个样本光谱数据与SPAD测量值进行分析,采用了不同的方法建立了多种预测模型,包括:全光谱的偏最小二乘法(partial least squares, PLS)模型,连续投影算法(successive projections algorithm, SPA)选择特征波长的PLS预测模型,“红边”位置(λred)的简单经验估测模型,三种植被指数R710/R760,(R750-R705)/(R750-R705)和R860/(R550*R708)分别建立的简单经验估测模型,以及基于这三种植被指数的PLS预测模型。建模结果显示,全光谱的PLS模型预测效果最为精确,其预测相关系数rp为0.833 9,预测均方根误差RMSEP为1.52。而使用SPA算法选出的8个特征波长所建立的PLS模型其预测结果可达到与全光谱的PLS模型非常接近的水平,而且在保证一定精度的条件下减少了大量运算,节省了运算时间,大幅提高了建模的速度。而基于红边位置和选择的三种植被指数而建立的简单经验估计模型其预测结果虽与基于全光谱的PLS预测模型有一定差距,但模型简单、运算量小,适合用于对精度要求不高的场合,对后续的便携仪器设备开发有一定的指导作用。 相似文献
15.
基于高光谱成像技术的山楂损伤和虫害缺陷识别研究 总被引:1,自引:0,他引:1
采用高光谱成像技术(420~1 000 nm)对山楂的缺陷(表面的损伤以及虫害区域)进行识别研究。共采摘了134个样品,包含损伤果46个、虫害果30个、损伤及虫害果10个和完好果48个。考虑到山楂的花萼、果梗与损伤、虫害的RGB图像有相似的外观特征,容易造成误判,利用高光谱成像系统采集了损伤、虫害、完好、花萼和果梗五个区域一共230个山楂样本的高光谱图像,并提取相应的感兴趣区域(region of interest, ROI),得到了样本的光谱数据。使用标准归一化(standard normalized variate, SNV),卷积平滑(savitzky golay, SG),中值滤波(median filter, MF),多元散射校正(multiplicative scatter correction, MSC)方法进行光谱预处理,建立偏最小二乘(partial least squares method, PLS)判别分析模型,结果表明经过SNV预处理后的预测结果较好。最后选取SNV作为预处理方法。应用回归系数法(regression coefficients, RCs)从全波段中提取10条特征波段(483,563,645,671,686,722,777,819,837和942 nm),利用Kennard-Stone算法将各类样本按照3:1的比例随机分成训练集(173个)和测试集(57个),并对其建立最小二乘支持向量机(least squares-support vector machine, LS-SVM)判别模型,山楂缺陷的正确识别率为91.23%。然后,运用主成分分析(principal componentanalysis, PCA)进行10条敏感波段下单波段图像的数据压缩,分别采用“sobel”算子和区域生长算法“Regiongrow”识别出86个缺陷山楂样本的边缘与缺陷特征区域,得出单损伤、单虫害和损伤及虫害样本的识别率分别为95.65%,86.67%和100%。研究结果表明:采用高光谱成像技术可以对山楂的损伤、虫害、花萼和果梗进行定性分析和特征识别,该研究为山楂的缺陷无损检测提供了理论参考。 相似文献
16.
高光谱成像的柑橘病虫害叶片识别方法 总被引:1,自引:0,他引:1
WU Ye-lan CHEN Yi-yu LIAN Xiao-qin LIAO Yu GAO Chao GUAN Hui-ning YU Chong-chong 《光谱学与光谱分析》2021,41(12):3837-3843
为监测柑橘生长状况,实现病虫害无损识别,利用高光谱成像技术和机器学习方法进行柑橘病叶分类研究。使用高光谱成像仪采集46片柑橘正常叶、46片溃疡病叶、80片除草剂危害叶、51片红蜘蛛叶和98片煤烟病叶的高光谱图像,在478~900 nm光谱范围内对每个叶片一个或多个发病区提取5×5的感兴趣区域(ROI),将ROI内每个像素的反射率值作为光谱信息,则一个ROI得到25个光谱信息样本,最终五类叶片共得到13250个光谱样本。利用随机法将全部样本划分为9 938个训练集和3 312个测试集。分别采用一阶求导(1stDer)、多元散射校正(MSC)和标准正态变换(SNV)三种方法对原始光谱信息进行预处理,对不同预处理方法后的数据采用主成分分析法(PCA)提取特征波长。1st Der预处理后得到7个特征波长,分别是520.2,689.0,704.8,715.4,731.2,741.8和757.6 nm;MSC和SNV预处理后得到7个相同的特征波长,分别是551.9,678.5,704.8,710.1,725.9,731.2和757.6 nm;原始光谱得到7个特征波长,分别是525.5,678.5,710.1,720.7,725.9,757.6和762.9 nm。分析PCA后的样本分布散点图可知,正常叶片、溃疡病叶片和红蜘蛛叶片样本有一定程度聚类,除草剂叶片和煤烟病叶片样本有大量重叠,仅依据PCA不能完成病虫害叶片的识别。对全波段(FS)和PCA特征波长数据在不同预处理方法下进行支持向量机(SVM)和随机森林(RF)建模,结果表明:数据在1stDer预处理方法下识别效果最佳,1st Der-FS-SVM模型总分类精度(OA)为95.98%,Kappa系数为0.948 2,1st Der-FS-RF模型OA为91.42%,Kappa系数为0.889 2,1stDer-PCA-SVM模型OA为90.82%,Kappa系数为0.881 6,1stDer-PCA-RF模型的OA为91.79%,Kappa系数为0.894;对PCA选择的特征波长数据建模,SVM和RF模型下识别率均达到84%,全波段下模型识别率在88%以上,FS数据建模效果优于PCA特征波长。研究结果表明,高光谱成像技术结合机器学习方法进行柑橘叶片分类是可行且有效的,为柑橘病虫害的无损准确识别提供理论根据。 相似文献
17.
柚类种质和品种资源繁多,现有的柚类品种鉴别方法检测时间长,费用高。旨在利用高光谱成像技术探索主要柚类品种快速识别的可行性。试验选用4个具有代表性的柚类品种,利用高光谱成像技术,采集240个叶片样本(60个/品种)上表面和下表面的高光谱图像。高光谱图像标定后,提取样本感兴趣区域平均光谱信息作为样本的光谱进行分析。利用Kennard-Stone法将样本划分为校正集(192个)和验证集(48个)。采用多元散射校正(MSC)和标准正态变量变换(SNV)对原始光谱曲线进行预处理后,分别采用主成分分析 (PCA)和连续投影算法 (SPA )提取最佳主成分和有效波长,并将其作为最小二乘支持向量机(LS-SVM)的输入变量,建立基于叶片上表面和下表面光谱信息的PCA-LS-SVM和SPA-LS-SVM 模型。结果显示,基于叶片上表面光谱信息建立的PCA-LS-SVM和SPA-LS-SVM 模型对建模集样本的识别正确率分别为99.46%和98.44%,对预测集样本的识别正确率均为95.83%。基于叶片下表面光谱信息建立的PCA-LS-SVM和SPA-LS-SVM模型对建模集样本和预测集样本的识别正确率皆为100%。表明,利用高光谱成像技术结合PCA-LS-SVM和SPA-LS-SVM可实现柚类品种的快速鉴别,叶片下表面光谱信息鉴别效果优于叶片上表面。该研究为柚类的品种快速鉴别提供了一种新方法。 相似文献
18.
报道了地面长波红外遥测的新进展 ,具体阐述了窗扫时空调制傅里叶光谱成像技术的实现过程.演示装置基于角锥反射镜M ichelson干涉具 ,构成了空间调制干涉 ;采用了制冷型长波红外焦平面探测器组件 ,通过对数据立方体的采集、重组、基线校正、切趾、相位校正和傅里叶变换等处理 ,实现了长波红外波段高光谱成像.自研的CHIPED-1长波红外高光谱成像原理实验装置的探测灵敏度指标噪声等效辐射通量密度NESR在单次采样时达到了5.6 × 10-8 W · (cm-1 · sr · cm2 )-1 ,与商品化时间调制干涉高光谱成像仪相当 ;反映了技术的先进性 ,并留有较大的改进空间.通过测试聚丙烯薄膜的透过率曲线 ,CHIPED-1红外高光谱成像原理实验装置的光谱响应范围达到了11. 5 μm.文章还以室外高楼和乙醚气体的探测实验为例 ,研究了二维分布化学气体VOC的高光谱成像探测方法.在复杂背景和低试验浓度情况下 ,从同一波数的红外光谱切片上 ,观察不出乙醚蒸气的存在 ,但是进行了差谱处理后 ,可以清楚看到乙醚蒸气的空间分布.高光谱方法应用在有机蒸气VOC的红外探测领域 ,相对于宽波段热成像方法 ,具有灵敏度高、抗干扰能力强和识别种类多等诸多优势. 相似文献