首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The effects of pyrophosphate ions (PP: P2O7(4-)) on the adsorption of proteins onto calcium hydroxyapatite (Hap) were examined using typical proteins of bovine serum albumin (BSA: isoelectric point (iep) = 4.7, molecular mass (M(s)) = 67 200 Da, acidic protein), myoglobin (MGB: iep = 7.0, M(s) = 17 800 Da, neutral protein), and lysozyme (LSZ: iep = 11.1, M(s) = 14,600 Da, basic protein). The UV and CD measurements determined that both the secondary and the tertiary structures of protein molecules do not vary in the presence of PP. The adsorption of BSA was strongly depressed by the addition of PP in all the methods with changing the order of PP addition. Even if BSA was pre-adsorbed on the Hap surface, PP replaced BSA molecules by strong preferential adsorption onto Hap to reduce the amounts of adsorbed BSA. A similar effect was observed with the adsorption of MGB. On the other hand, the amount of adsorbed LSZ (n(LSZ)) was increased with an increase in the concentration of PP, and the n(LSZ) value showed a maximum point in each adsorption isotherm. This fact was explained by a compression of the electric double layer (EDL) around each LSZ molecule by PP. This compression of the EDL induced the reduction of lateral electrostatic repulsions between charged LSZ molecules on the Hap surface and enhanced the formation of closed-packed monolayers to raise the n(LSZ) value. However, since the number of PPs around a LSZ molecule is decreased by an increase in the LSZ concentration in each system, the thickness of the EDL may be increased. Hence, n(LSZ) was reduced again after the maximum point in each system. Tripolyphosphate (TPP: P3O10(5-)) ions exhibited similar effects on the adsorption behaviors of all proteins, but a much more pronounced effect was observed on the LSZ system. TPP with a higher eletronegativity shielded the EDL more highly than PP to increase the n(LSZ) value. The results of the zeta potential for all the protein systems supported the modes of protein adsorption discussed.  相似文献   

2.
To clarify the adsorption mechanism of proteins onto calcium hydroxyapatite (Hap), the present study measured adsorption (DeltaHads) and desorption (DeltaHdes) enthalpies of bovine serum albumin (BSA; isoelectric point (iep) 4.7, molecular mass (Ms) 67,200 Da, acidic protein), myoglobin (MGB; iep=7.0, Ms=17,800 Da, neutral protein), and lysozyme (LSZ; iep=11.1, Ms=14,600 Da, basic protein) onto Hap by a flow microcalorimeter (FMC). Five kinds of large platelike particles of CaHPO4.2H2O (DCPD) after hydrolyzing at room temperature with different concentrations of NaOH aqueous solution ([NaOH]) for 1 h were used. DCPD converted completely to Hap after treatment at [NaOH]>or=2%, and the crystallinity of Hap was increased with an increase in [NaOH] up to 10%. The amounts of protein adsorbed (Deltanads) and desorbed (Deltandes) were measured simultaneously by monitoring the protein concentration downstream from the FMC with a UV detector. The Deltanads values were also measured statically by a batch method in each system. The Deltanads values measured by the FMC and static measurements fairly agreed with each other. Results revealed that DeltaHBSAads was decreased with an increase in [NaOH]; in other words, DeltaHBSAads was decreased with the improvement of Hap's crystallinity, suggesting that the BSA adsorption readily proceeded onto Hap. This fact indicated a high affinity of Hap to protein. This affinity was further recognized by DeltaHBSAdes because its positive value was increased by increasing [NaOH]. These opposite tendencies in DeltaHBSAads and DeltaHBSAdes revealed that Hap possessed a high adsorption affinity to BSA (i.e., enthalpy facilitated protein adsorption but hindered its desorption). The fraction of BSA desorption was also decreased with an increase in [NaOH], confirming the high affinity of Hap to protein. Similar results were observed on the LSZ system, though the enthalpy values were smaller than those of BSA. In the case of neutral MGB, DeltaHBSAads also exhibited results similar to those of the BSA and LSZ systems. However, due to its weak adsorption by the van der Waals force, DeltaHBSAdes was small and almost zero at [NaOH]>or=2%. Hence, the fraction of MGB desorption was less dependent on [NaOH].  相似文献   

3.
The fundamental experiments on the adsorption behaviors of proteins onto photocatalytic Ti(4+)-doped calcium hydroxyapatite (TiHap) particles were examined comparing to those onto the calcium hydroxyapatite (CaHap) and commercially available typical titanium oxide (TiO(2)) photocatalyst (TKP-101). The heat treated TiHap and CaHap particles were also used after treated these particles at 650°C for 1h (abbreviated as TiHap650 and CaHap650, respectively). All the adsorption isotherms of bovine serum albumin (BSA), myoglobin (MGB) and lysozyme (LSZ) from 1×10(-4)mol/dm(3) KCl solution were the Langmuirian type. The saturated amounts of adsorbed BSA (n(s)(BSA)) for the CaHap650 particles was higher than that for CaHap. Similar results were observed for TiHap and TiHap650. The adsorption of LSZ exhibited the same result of BSA, while the saturated amounts of adsorbed LSZ (n(s)(LSZ)) value on the TiHap were much higher than CaHap. However, the saturated amounts of adsorbed MGB (n(s)(MGB)) are almost equal to those for the CaHap and TiHap nevertheless whether these particles were heat treated at 650°C or not. The TKP-101 exhibited extremely small adsorption capacity of all proteins due to its small particle size of ca. 4nm in diameter. The independence of the n(s)(MGB) value on the zeta potential (zp) of the particles was explained by the electrostatical neutrality of MGB molecules. On the other hand, the n(s)(LSZ) values were increased with increase in the negative zp of the particles. This fact was explained by increasing the electrostatic attractive forces between negatively charged particles and positively charged LSZ. However, the n(s)(BSA) values exhibit maxima for the heat treated TiHap650 and CaHap650 particles. This result was interpreted to the formation of β-TCP crystal phase by the heat treatment. The produced Ca(2+) ions by dissolution from β-TCP phase may exert as binders between BSA and surfaces of the heat treated particles.  相似文献   

4.
This paper presents data on adsorption of immunogamma globulin (IgG) onto synthetic rodlike calcium hydroxyapatite particles (CaHaps) with various particle lengths and calcium/phosphate (Ca/P) atomic ratios ranging from 1.54 to 1.65 and compares the obtained results to those of acidic (bovine serum albumin, BSA), neutral (myoglobin, MGB), and basic (lysozyme, LSZ) proteins reported before. The effect of electrolyte concentration on IgG adsorption was also examined. The initial rate of IgG adsorption was similar to that of BSA and was slower than that of MGB and LSZ. This fact was interpreted by the difference in the structural stability and molecular weight of these proteins. The isotherms of IgG adsorption onto the CaHap particles were of pseudo-Langmuir type. The saturated amount of adsorbed IgG values (nsIgG) for the particles with mean particle length less than 70 nm decreased with increasing Ca/P ratio. The adsorption behavior of IgG molecules was very similar to that of basic LSZ, though IgG has zero net charge. The nsIgG value was increased with increased mean particle length of CaHaps; the relationship was less significant than that for BSA but similar to those for MGB and LSZ. The similar adsorption behavior of IgG and LSZ suggested that the Fab parts of IgG molecules preferentially adsorb onto CaHap to provide the reversed Y-shaped conformation of IgG. The change of the adsorption mode of IgG molecules from the reversed Y-shaped conformation to side-on by "spreading" the Fc part of IgG molecules onto the particle surface over a longer adsorption time was suggested. The nsIgG value was increased with increasing electrolyte concentration by screening the intra- and intermolecular electrostatic interactions of proteins.  相似文献   

5.
The participation of electrolyte cations in the adsorption of bovine serum albumin (BSA) onto polymer latices was investigated. The latices used were hydrophobic polystyrene (PS), and hydrophilic copolymers, i.e., styrene (St)/2-hydroxyethyl methacrylate(HEMA) copolymer [P(St/HEMA)] and styrene/acrylamide (AAm) copolymer [P(St/AAm)]. Three kinds of electrolyte cations (Na+, Ca2+, Mg2+) were used as the chloride. The amount of BSA adsorbed in every cation medium showed a maximum near the isoelectric point (iep, pH about 5) of the protein. The amounts of BSA adsorbed onto copolymer latices (except in the acidic pH region lower than the iep) were considerably smaller than that onto PS latex because of the steric repulsion and the decrease in the hydrophobic interaction between BSA and copolymer latices. In the acidic pH region, there was little difference in the amount of BSA adsorbed in every cation medium. However, in the pH region higher than the iep, the amounts of BSA adsorbed (particularly onto PS latex) in divalent cations (Ca2+ and Mg2+) media were relatively greater compared with that in a monovalent (Na+) one. This result was interpreted on the basis of the differences in such effects of electrolyte cations as dehydration power, suppression of the electrostatic repulsion, and binding affinity to BSA molecule. Ion Chromatographic estimation of the amounts of electrolyte cations captured upon BSA adsorption (in pH > 5) revealed that divalent cations were incorporated into the contact interface between the latex and BSA molecule so as to prevent the accumulation of anion charge and facilitate the protein adsorption.  相似文献   

6.
Magnetic particles about 10 nm in size were prepared by chemical precipitation under nitrogen and used for the selective and sequential adsorption of bovine serum albumin (BSA) (pI = 4.7) and lysozyme (LSZ) (pI = 1.1) under different conditions, such as pH and initial protein concentration. The separation ratio of BSA over LSZ at pH 4.6 is about 5, which is about 1.5 times the separation ratio of LSZ over BSA at pH 11.0. Only 10% of the preadsorbed BSA could be displaced by the sequential adsorption of LSZ at pH 11.0. On the other hand, 60% of the preadsorbed LSZ was desorbed due to the sequential adsorption of BSA at pH 4.6. Over 50% desorption of BSA or LSZ could be achieved either by 0.5 M Na(2)HPO(4) or 0.5 M NaH(2)PO(4) after 2 h. Over 80% of the enzymatic activity of LSZ was preserved when it was desorbed from magnetic particles.  相似文献   

7.
The adsorption affinity of bovine serum albumin (BSA) and lysozyme (LSZ) to calcium hydroxyapatite (CaHAP) was evaluated by desorption and two step adsorption methods. These experiments were carried out at 15°C in a 1×10−4 mol dm−3 KCl solution of pH 6.0. BSA molecules were scarcely desorbed, exhibiting an irreversible adsorption of BSA, though LSZ slightly desorbed. This result supports our previous findings that LSZ adsorbs weakly onto phosphate ions exposed on ac or bc faces of CaHAP while BSA adsorbs strongly onto positively charged sites on ac or bc faces of CaHAP. The amount of adsorbed LSZ was markedly increased by the pre-adsorption of BSA, where LSZ was adsorbed onto BSA-covered CaHAP. On the other hand, the amount of adsorbed BSA was not changed by the pre-adsorption of LSZ. In both pre-adsorption systems it was confirmed by an HPLC method that no protein molecule pre-adsorbed was desorbed after the post-adsorption procedure. Therefore, it was interpreted that the enhancement of adsorption of positively charged LSZ is induced by an electrostatic attractive force through pre-adsorption of negatively charged BSA molecules with a high coverage. However, since the coverage of LSZ onto CaHAP is considerably low, no stimulation of BSA adsorption occurred on the LSZ-covered surface. The formation of double protein adsorbed layers consisting of pre- and post-adsorbed proteins was proposed.  相似文献   

8.
The adsorption of bovine serum albumin (BSA) on platinum surfaces with a root-mean-square roughness ranging from 1.49nm to 4.62nm was investigated using quartz crystal microbalance with dissipation (QCM-D). Two different BSA concentrations, 50microg/ml and 1mg/ml, were used, and the adsorption studies were complemented by monitoring the antibody interaction with the adsorbed BSA layer. The adsorption process was significantly influenced by the surface nano-roughness, and it was observed that the surface mass density of the adsorbed BSA layer is enhanced in a non-trivial way with the surface roughness. From a close examination of the energy dissipation vs. frequency shift plot obtained by the QCM-D technique, it was additionally observed that the BSA adsorption on the roughest surface is subject to several distinct adsorption phases revealing the presence of structural changes facilitated by the nano-rough surface morphology during the adsorption process. These changes were in particular noticeable for the adsorption at the low (50microg/ml) BSA concentration. The results confirm that the nano-rough surface morphology has a significant influence on both the BSA mass uptake and the functionality of the resulting protein layer.  相似文献   

9.
用微波烧结和常规烧结方法分别制备了4种具有纳米和微米结构的磷酸钙陶瓷, 对陶瓷的相组成、 微观结构、 粒度分布、 比表面积、 孔径分布和表面Zeta电位进行了对比分析, 并进一步采用凝胶电泳法考察了陶瓷对牛血清白蛋白/溶菌酶双蛋白的吸附行为. 结果显示, 纳米陶瓷和常规陶瓷具有相似的相组成、 颗粒分布和表面Zeta电位, 但微孔结构、 比表面积和蛋白吸附差异明显. 纳米陶瓷具有较小的晶粒尺寸和更丰富的介孔结构, 使其能吸附更多的牛血清白蛋白和溶菌酶, 表明其具有更强的生物活性.  相似文献   

10.
The adsorption of bovine serum albumin (BSA) and lysozyme (LSZ) to oleyl phosphate(OP)-grafted calcium hydroxyapatite (OP-CaHAP) with different degrees of hydrophobicity, ranging the number of surface oleyl group per unit nm2 (nO) from 0 to 2.60, was investigated. The pronounced effects of the hydrophobic moiety of adsorbent on protein adsorption were observed. The saturated amount of adsorbed BSA (ns) was increased up to nO = 0.6 by an enlargement of hydrophobic interaction between hydrophobic CaHAP particle and proteins. However, ns decreased at nO >/= 1.3 by increasing the electrostatic repulsive force between negatively charged BSA and OP-CaHAP particles. On the other hand, the ns value of LSZ was continuously increased up to nO = 2.0 and saturated by increasing either the hydrophobic interaction or the electrostatic attraction of positively charged LSZ and negatively charged OP-grafted CaHAPs. The BSA adsorption experiment revealed that the effect of positively charged adsorption sites on the exposed ac or bc crystal faces (C-sites) of the CaHAPs is screened by the OP-groups grafted on their particle surfaces. Copyright 1999 Academic Press.  相似文献   

11.
Protein adsorption on charged inorganic solid materials has recently attracted enormous interest owing to its various possible applications, including drug delivery and biomaterial design. The need to combine experimental and computational approaches to get a detailed picture of the adsorbed protein properties is increasingly recognised and emphasised in this review. We discuss the methods frequently used to study protein adsorption and the information they can provide. We focus on model systems containing a silica surface, which is negatively charged and hydrophilic at physiological pH, and two contrasting proteins: bovine serum albumin (BSA) and lysozyme (LSZ) that are both water soluble. At pH 7, BSA has a net negative charge, whereas LSZ is positive. In addition, BSA is moderately sized and flexible, whereas LSZ is small and relatively rigid. These differences in charge and structural nature capture the role of electrostatics and hydrophobic interactions on the adsorption of these proteins, along with the impact of adsorption on protein orientation and function. Understanding these model systems will undoubtedly enhance the potential to extrapolate our knowledge to other systems of interest.  相似文献   

12.
The adsorption of bovine serum albumin (BSA) on fused silica at pH 4.7 was studied at the single molecules level by total-internal-reflection fluorescence microscopy. This pH value was the isoelectric point of BSA. At low [BSA] of 20 pM, protein molecules adsorbed as monomers. At intermediate [BSA] of 500 pM, protein molecules adsorbed as clusters of about five monomers on average. Both monomers and clusters had adsorption rate coefficients of the order 10−7 m s−1 and desorption rate coefficients of about 2 × 10−2 s−1. The respective steady-state coverage was about 10× higher than that at neutral pH, presumably because of the more favorable BSA–silica electrostatics. At pH 4.7 and with [BSA] higher than 100 nM, adsorption begot further adsorption to produce nonlinear isotherms. The coverage at 1 μM BSA was 2.5× that of the linearly extrapolated coverage. This suggests that at pH 4.7, solute–adsorbate affinity was the dominant factor that explains the enhanced adsorption observed in ensemble measurements.  相似文献   

13.
The objective of this study was to examine the effects of acetonitrile (AN) on the adsorption behavior of bovine serum albumin (BSA) onto calcium hydroxyapatite [Ca10(PO4)6(OH)2 Ca10, Hap] materials by combining the ultraviolet (UV) and circular dichroism (CD) measurements of BSA solution. The structural change of BSA molecules with addition of AN was investigated by UV and CD spectroscopy measurements prior to studying adsorption behavior of BSA onto Hap. The CD spectra revealed that the fraction of alpha-helical content of BSA is remarkably decreased at AN concentrations above 30 vol.%, while beta-sheet content is increased. On the other hand, the percentages of random coil and turn contents were decreased only slightly. In addition to this secondary structural change of BSA, the UV spectra suggested that the tertiary structure of protein molecules was also changed by the addition of large amounts of AN; BSA molecules associate to form molecular aggregates at [AN]> or =40 vol.%. From the adsorption of BSA onto Hap particles (ca. 30 nm in the particle length) from a water-AN mixed solution, it was revealed that the adsorption behavior of BSA strongly depends on the change of secondary and tertiary structures of BSA by addition of AN. The contraction of BSA molecules at low AN concentrations (10-20 vol.%) gave their small cross-sectional area, providing a large amount of adsorption (n(BSA)), although n(BSA) was decreased above 30 vol.% AN by enlargement of BSA molecules with solvation and unfolding some alpha-helix domains. The n(BSA) values of the systems with AN exhibited a maximum; n(BSA) was increased at a lower BSA concentration region, although it was decreased at a higher BSA concentration due to self-association. Accompanying the change of n(BSA) with AN addition, the maxima of electrophoretic mobility (em) of the Hap particles were observed for the systems with AN, although the em of Hap particles was normally increased and saturated with increase in protein coverage for the native structure on the system without AN. On the other hand, because the aggregated BSA molecules could be cooperatively bound, the adsorption of BSA onto the Hap particles with large size (108 nm in the particle length) was enhanced in the presence of AN.  相似文献   

14.
The adsorption of a model protein, bovine serum albumin (BSA), on Au electrodes was investigated using the Cu adatom probe method and Electrochemical Quartz Crystal Nanobalance (EQCN) technique. The adsorption of BSA was confirmed by AFM imaging and has been found to be controlled by kinetics. Using the Cu adatom probe method, we were able to reconstruct the entire BSA adsorption transient Theta(BSA) vs. t. The adsorption rate constant k(1), determined from this transient is k(1)=2.45x10(5) L mol(-1) s(-1). We have found that the bulk Cu(0) deposition process is blocked by BSA adsorption and it decays exponentially with time during BSA adsorption. It ceases completely when a full monolayer of BSA is formed. In contrast to that, the mass associated with Cu-u.p.d. decreases only to ca. 50% of that in the absence of BSA, indicating that Cu adatoms can penetrate (wedge) into the space between the surface Au atoms and the adsorbed BSA molecules. In addition to that, we have found that the degree of penetration of Cu adatoms can be controlled by the applied deposition potential. By selecting a sufficiently cathodic potential, we were able to deposit a full Cu-u.p.d. monolayer, independent of the BSA surface coverage extending from Theta(BSA)=0 to Theta(BSA) approximately 1. The positive shift of Cu(ad) desorption peak potential E(p), observed in the presence of adsorbed BSA, has been interpreted in terms of Frumkin exchange interaction forces between Cu(ad) and BSA(ad), on the basis of our earlier theoretical model, expanded here to include adsorbed species in two monolayers. This expansion is possible owing to the fast rate of Cu adatom penetration in the interfacial region. From the plots of E(p) vs. Theta(BSA), the presence of strong attractive interactions between Cu(ad) and BSA(ad) was deduced. These interactions result in a super-shift of the Cu-u.p.d. desorption peak potential, corresponding to the exchange interaction coefficient g(M,X)<-4, indicating on a possibility of the formation of a stable interface complex.  相似文献   

15.
The effects of adsorption of two kinds of proteins on the membrane characteristics of liposomes were examined at pH 7.4 in terms of adsorption amounts of proteins on liposomes, penetrations of proteins into liposomal bilayer membranes, phase transition temperature, microviscosity and permeability of liposomal bilayer membranes, using positively charged lysozyme (LSZ) and negatively charged bovine serum albumin (BSA) as proteins and negatively charged L-alpha-dipalmitoylphosphatidylglycerol (DPPG) liposomes. The saturated adsorption amount of LSZ was 720 g per mol of liposomal DPPG, while that of BSA was 44 g per mol of liposomal DPPG. The penetration of LSZ into DPPG lipid membranes was greater than that of BSA. The microviscosity in the hydrophobic region of liposomal bilayer membranes increased due to adsorption (penetration) of LSZ or BSA, while the permeability of liposomal bilayer membranes increased. The gel-liquid crystalline phase transition temperature of liposomal bilayer membranes was not affected by adsorption of LSZ or BSA, while the DSC peak area (heat of phase transition) decreased with increasing adsorption amount of LSZ or BSA. It is suggested that boundary DPPG makes no contribution to the phase transition and that boundary DPPG and bulk DPPG are in the phase-separated state, thereby increasing the permeability of liposomal bilayer membranes through adsorption of LSZ or BSA. A possible schematic model for the adsorption of LSZ or BSA on DPPG liposomes was proposed.  相似文献   

16.
The poly(2-vinylpyridine) layer was established at the Pyrex glass/water interface with periodic phases of adsorption/desorption runs observed over several days. This was evidenced by determining the concentration of radio-labelled molecules in the solution equilibrating the glass beads as a function of time (the effluent) while the same radio-labelled polymer was slowly supplied by injecting the polymer solution into the reactor containing the adsorbent at a controlled extremely slow rate. Although the adsorption (or the desorption) steps seemed to present some periodic character, they were better correlated with the successive bulk concentration thresholds that were established with time when the initial surface was free of polymer at time zero. Even when the adsorbent was coated at different degrees, desorption steps were correlated to the overstepping of decreasing concentration thresholds. Adsorption and desorption runs were attributed to the existence of different typical interfacial conformations of the adsorbed macromolecules that only can be stabilised in the adsorbed state when the layer was equilibrated with the polymer solution of a certain concentration. Macromolecule were definitely adsorbed when the reconformation process led to a flat conformation (trains). Macromolecules adsorbed with a conformation close to their solution conformation may be desorbed as a result of the reconformation process affecting previously adsorbed neighbour molecules (in the case of partially coated surfaces at time zero of injection). Macromolecules with loops and tails were retained on the surface when the polymer concentration in the bulk was progressively increased (for uncoated surfaces at time zero of injection). All these effect were attributed to the combined influence of topological effects on adsorption and reconformation of adsorbed macromolecules that characterise the non-equilibrium adsorption processes.  相似文献   

17.
 应用红外光谱和程序升温脱附技术研究了Rh-Mn-Li-Ti/SiO2催化剂上H2对CO吸附和脱附的影响. 结果表明,预吸附的H2主要占据线式CO的吸附位. 共吸附时H2与CO在Rh位上形成了羰基氢化物,从而导致线式物种谱带红移,且高的H2浓度有利于CO的吸附. 在323 K下, H2对预吸附的CO谱带位置和强度没有影响. 但是,随着温度的升高, H2的存在促进了弱吸附CO的脱附,并使之重新吸附; 同时, H2促进了强吸附CO的解离,增强了CO的吸附强度和催化剂的吸附能力.  相似文献   

18.
The effect of the surface topography on the protein adsorption process is of great significance for designing biomaterial surfaces and the biocompatibility for specific biomedical applications. In this work, we have systematically investigated the mono‐protein adsorption kinetics of bovine serum albumin (BSA) and fibrinogen (Fg) adsorbed on the four different surface topographies (nanoparticles (NPs), nanorods (NRs), nanosheets (NSs) and nanobeams (NBs) of Zinc oxide (ZnO), respectively. The competition of multi‐protein adsorbed on them has been studied as well. Results showed that each protein had a singular process of adsorption that fitted well by Spreading Particle Model (SPM). It confirmed that ZnO NRs compared with other samples had more adsorption sites, which could provide more opportunities for the interaction between material and protein molecules. In addition, the Fg compared to the BSA could be more tightly adsorbed to the surface, both of which existed slight conformational changes by Fourier transform infrared (FTIR) and circular dichroism spectra (CD). Taken together, all these consequences well demonstrated that NRs may have wider applications in designing biomaterial surfaces and the biocompatibility for implanted biomaterials. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The Pt(111) electrode is modified by an overlayer of C6H6 (ads) upon its cycling in the 0.05-0.80 V range in aq H2SO4 + 1 mM C6H6. The C6H6 (ads) overlayer significantly changes the underpotential-deposited H (H(UPD)) and anion adsorption, and cyclic-voltammetry (CV) profiles show a sharp cathodic peak and an asymmetric anodic one in the 0.05-0.80 V potential range. The C6H6 (ads) layer blocks the (bi)sulfate adsorption but facilitates the adsorption of one monolayer of H(UPD). Cycling of the benzene-modified Pt(111) in benzene-free aq 0.05 H2SO4 from 0.05 to 0.80 V results in a partial desorption of C6H6 (ads) and in a partial recovery of the CV profile characteristic of an unmodified Pt(111). The peak potential of the cathodic and anodic feature is independent of the scan rate, s (10 < or = s < or = 100 mV s(-1)), and the peak current density increases linearly with an increase of the scan rate. Temperature variation modifies the peak potential and current density but does not affect the charge density of the cathodic or anodic feature. Temperature-dependent studies allow us to determine the thermodynamic state function for the H(UPD) adsorption and desorption. Delta G degrees(ads)(H(UPD))assumes values from -4 to -12 kJ mol(-1), while has values from 9 to 14 kJ mol(-1). The values of delta Delta G degrees (delta Delta G degrees = delat Delta G degrees(ads) + delta Delta D degrees(des)) decrease almost linearly from 6 kJ mol(-1) at theta(H(UPD) --> 0 to 0 kJ mol(-1) at theta(H(UPD) --> 1. The nonzero values of delta Delta G degrees testify that the adsorbing and desorbing H(UPD) adatoms interact with an energetically different substrate. The lateral interactions changed from repulsive (omega = 29 kJ mol(-1) at theta(H(UPD) --> 0) to attractive (omega = -28 kJ mol(-1) at theta(H(UPD) --> 1) as the H(UPD) coverage increases. The values of delta S degrees(ads)(H(UPD)) increase from 19 to 56 J K(-1) mol(-1), while those of delta S degrees(des)(H(UPD)) decrease from 45 to -30 J K(-1) mol(-1) with an increase of H(UPD) coverage. The values of delta H degrees(des)(H(UPD)) and delta H degrees(des)(H(UPD)) vary from 0 to 27 kJ mol(-1). The Pt(111)-H(UPD) surface bond energy at the benzene-modified Pt(111) electrode falls in the 191-218 kJ mol(-1) range and is weaker than in the case of the unmodified Pt(111) electrode in the same electrolyte.  相似文献   

20.
The selective uptake of bovine serum albumin (BSA) and β-glucosidase (β-G) by annealed and quenched cationic spherical polyelectrolyte brushes (SPB) was systematically studied by combining turbidimetric titration, dynamic light scattering and small angle X-ray scattering (SAXS). These two kinds of SPB consist of a same polystyrene core and a dense shell of poly (2-aminoethyl methacrylate hydrochloride) (PAEMH) and poly [2-(methacryloyloxy) ethyl] trimethylammonium chloride (PMAETA), respectively. Results reveal that the adsorption/desorption of proteins on SPB can be easily controlled by changing external conditions (pH and ionic strength). For a particular annealed or quenched SPB, there is a significant difference of the interaction pH regions between the brush and the two proteins, and this difference can be tuned by ionic strength. At low ionic strength, quenched brushes were more suitable for selective adsorption of BSA and β-G, while annealed brushes performed better at high ionic strength. SAXS analysis demonstrated that volume exclusion effect played a remarkable role in protein uptake by both SPB, and larger proteins were more likely to be adsorbed on the outer layer of the brush. The unique core-shell structure and controllable chain types make SPB an excellent candidate in selective adsorption/separation of proteins of different sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号