首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this article, we propose a simple area‐preserving correction scheme for two‐phase immiscible incompressible flows with an immersed boundary method (IBM). The IBM was originally developed to model blood flow in the heart and has been widely applied to biofluid dynamics problems with complex geometries and immersed elastic membranes. The main idea of the IBM is to use a regular Eulerian computational grid for the fluid mechanics along with a Lagrangian representation of the immersed boundary. Using the discrete Dirac delta function and the indicator function, we can include the surface tension force, variable viscosity and mass density, and gravitational force effects. The principal advantage of the IBM for two‐phase fluid flows is its inherent accuracy due in part to its ability to use a large number of interfacial marker points on the interface. However, because the interface between two fluids is moved in a discrete manner, this can result in a lack of volume conservation. The idea of an area preserving correction scheme is to correct the interface location normally to the interface so that the area remains constant. Various numerical experiments are presented to illustrate the efficiency and accuracy of the proposed conservative IBM for two‐phase fluid flows. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Transient free-surface (FS) flows are numerically simulated by a finite element interface capturing method based on a level set approach. The methodology consists of the solution of two-fluid viscous incompressible flows for a single domain, where the liquid phase is identified by the positive values of the level set function, the gaseous phase by negative ones, and the FS by the zero level set. The numerical solution at each time step is performed in three stages: (i) a two-fluid Navier–Stokes stage, (ii) an advection stage for the transport of the level set function and (iii) a bounded reinitialisation with continuous penalisation stage for keeping smoothness of the level set function. The proposed procedure, and particularly the renormalisation stage, is evaluated in three typical two- and three-dimensional problems.  相似文献   

3.
A two‐step conservative level set method is proposed in this study to simulate the gas/water two‐phase flow. For the sake of accuracy, the spatial derivative terms in the equations of motion for an incompressible fluid flow are approximated by the coupled compact scheme. For accurately predicting the modified level set function, the dispersion‐relation‐preserving advection scheme is developed to preserve the theoretical dispersion relation for the first‐order derivative terms shown in the pure advection equation cast in conservative form. For the purpose of retaining its long‐time accurate Casimir functionals and Hamiltonian in the transport equation for the level set function, the time derivative term is discretized by the sixth‐order accurate symplectic Runge–Kutta scheme. To resolve contact discontinuity oscillations near interface, nonlinear compression flux term and artificial damping term are properly added to the second‐step equation of the modified level set method. For the verification of the proposed dispersion‐relation‐preserving scheme applied in non‐staggered grids for solving the incompressible flow equations, three benchmark problems have been chosen in this study. The conservative level set method with area‐preserving property proposed for capturing the interface in incompressible fluid flows is also verified by solving the dam‐break, Rayleigh–Taylor instability, bubble rising in water, and droplet falling in water problems. Good agreements with the referenced solutions are demonstrated in all the investigated problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A study of spurious currents in continuous finite element based simulations of the incompressible Navier–Stokes equations for two‐phase flows is presented on the basis of computations on a circular drop in equilibrium. The conservative and the standard level set methods are used. It is shown that a sharp surface tension force, expressed as a line integral along the interface, can give rise to large spurious currents and oscillations in the pressure that do not decrease with mesh refinement. If instead a regularized surface tension representation is used, exact force balance at the interface is possible, both for a fully coupled discretization approach and for a fractional step projection method. However, the numerical curvature calculation introduces errors that cause spurious currents. Different ways to extend the curvature from the interface to the whole domain are discussed and investigated. The impact of using different finite element spaces and stabilization methods is also considered. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we study an interface transport scheme of a two‐phase flow of an incompressible viscous immiscible fluid. The problem is discretized by the characteristics method in time and finite elements method in space. The interface is captured by the level set function. Appropriate boundary conditions for the problem of mold filling are investigated, a new natural boundary condition under pressure effect for the transport equation is proposed, and an algorithm for computing the solution is presented. Finally, numerical experiments show and validate the effectiveness of the proposed scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The free fluid-surface of incompressible creeping flows is analyzed using a finite element method. A pseudo-concentration (PC) function is introduced to determine the position of the free surface. The Taylor-Galerkin finite element method (TGFEM) is applied to solve the equation of the PC function. Nine-node quadratic interpolation is used for both PC and velocity. The unsteady flows of fluids moving of their own weight are analyzed using the proposed method.  相似文献   

7.
In this paper, the circular function–based gas kinetic scheme (GKS), which is often applied for simulation of compressible flows, is simplified to improve computational efficiency for simulation of incompressible flows. In the original circular function–based GKS, the integral domain along the circle for computing conservative variables and numerical fluxes is usually not symmetric at the cell interface. This leads to relatively complicated formulations for computing the numerical flux at the cell interface. As shown in this work, for incompressible flows, the circle at the cell interface can be approximately considered to be symmetric. As a consequence, the simple expressions for calculation of conservative variables and numerical fluxes at the cell interface can be obtained, and computational efficiency is greatly improved. In the meanwhile, like the original circular function–based GKS, the discontinuity of conservative variables and their derivatives at the cell interface is still kept in the present scheme to keep good numerical stability at high Reynolds numbers. Several numerical examples, including decaying vortex flow, lid‐driven cavity flow, and flow past a stationary and rotating circular cylinder, are tested to validate the accuracy, efficiency, and stability of the present scheme.  相似文献   

8.
A hybrid conservative finite difference/finite element scheme is proposed for the solution of the unsteady incompressible Navier–Stokes equations. Using velocity–pressure variables on a non-staggeredgrid system, the solution is obtained with a projection method basedon the resolution of a pressure Poisson equation. The new proposed scheme is derived from the finite element spatial discretization using the Galerkin method with piecewise bilinear polynomial basis functions defined on quadrilateral elements. It is applied to the pressure gradient term and to the non-linear convection term as in the so-called group finite element method. It ensures strong coupling between spatial directions, inhibiting the development of oscillations during long-term computations, as demonstrated by the validation studies. Two- and three-dimensional unsteady separated flows with open boundaries have been simulated with the proposed method using Cartesian uniform mesh grids. Several examples of calculations on the backward-facing step configuration are reported and the results obtained are compared with those given by other methods. © 1997 by John Wiley & Sons, Ltd. Int. j. numer. methods fluids 24: 833–861, 1997.  相似文献   

9.
In this work we present a numerical method for solving the incompressible Navier–Stokes equations in an environmental fluid mechanics context. The method is designed for the study of environmental flows that are multiscale, incompressible, variable‐density, and within arbitrarily complex and possibly anisotropic domains. The method is new because in this context we couple the embedded‐boundary (or cut‐cell) method for complex geometry with block‐structured adaptive mesh refinement (AMR) while maintaining conservation and second‐order accuracy. The accurate simulation of variable‐density fluids necessitates special care in formulating projection methods. This variable‐density formulation is well known for incompressible flows in unit‐aspect ratio domains, without AMR, and without complex geometry, but here we carefully present a new method that addresses the intersection of these issues. The methodology is based on a second‐order‐accurate projection method with high‐order‐accurate Godunov finite‐differencing, including slope limiting and a stable differencing of the nonlinear convection terms. The finite‐volume AMR discretizations are based on two‐way flux matching at refinement boundaries to obtain a conservative method that is second‐order accurate in solution error. The control volumes are formed by the intersection of the irregular embedded boundary with Cartesian grid cells. Unlike typical discretization methods, these control volumes naturally fit within parallelizable, disjoint‐block data structures, and permit dynamic AMR coarsening and refinement as the simulation progresses. We present two‐ and three‐dimensional numerical examples to illustrate the accuracy of the method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
A new interface capturing algorithm is proposed for the finite element simulation of two‐phase flows. It relies on the solution of an advection equation for the interface between the two phases by a streamline upwind Petrov–Galerkin (SUPG) scheme combined with an adaptive mesh refinement procedure and a filtering technique. This method is illustrated in the case of a Rayleigh–Taylor two‐phase flow problem governed by the Stokes equations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
The hydrodynamics of fluid mixtures is receiving more and more attention in many science and engineering applications. Within the techniques for dealing with front displacements and moving boundaries between different density and/or viscosity fluids, phase fields are a class of models in which a diffusive transition region is taken into account instead of a steep interface. Although these models have a physical motivation, they require the definition of extra parameters. In order to make it less parameter dependent, the classic Allen–Cahn phase field model is modified, exploring its similarities with residual‐based discontinuity‐capturing schemes, making the phase field equation dependent on its own residual. We solve the coupling between incompressible viscous fluid flow and the phase field advective–diffusive–reactive transport to simulate the main processes in interface tension and/or buoyancy driven problems. For the solution of the Navier–Stokes and transport equations, we use a stabilized finite element formulation. The implementation has been performed using the libMesh finite element library, written in C++ , which provides support for adaptive mesh refinement and coarsening. A chemical convection benchmark problem is used to validate the proposed model, and then we solve two bubble interaction problems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a coupled finite volume inner doubly iterative efficient algorithm for linked equations (IDEAL) with level set method to simulate the incompressible gas–liquid two‐phase flows with moving interfaces on unstructured triangular grid. The finite volume IDEAL method on a collocated grid is employed to solve the incompressible two‐phase Navier–Stokes equations, and the level set method is used to capture the moving interfaces. For the sake of mass conservation, an effective second‐order accurate finite volume scheme is developed to solve the level set equation on triangular grid, which can be implemented much easier than the classical high‐order level set solvers. In this scheme, the value of level set function on the boundary of control volume is approximated using a linear combination of a high‐order Larangian interpolation and a second‐order upwind interpolation. By the rotating slotted disk and stretching and shrinking of a circular fluid element benchmark cases, the mass conservation and accuracy of the new scheme is verified. Then the coupled method is applied to two‐phase flows, including a 2D bubble rising problem and a 2D dam breaking problem. The computational results agree well with those reported in literatures and experimental data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The penalty function formulation of the finite element method is described for the analysis of transient incompressible creeping flows. Marker particles are utilized to represent moving free surfaces and to visualize the flow patterns. For determining the movement of markers from element to element, the area coordinate system of the linear triangular element is introduced. With the method presented, a punch indentation problem and an injection problem for an L-shaped cavity are solved for Newtonian and power-law fluids.  相似文献   

14.
In this paper, we present a model for the dynamics of particles suspended in two‐phase flows by coupling the Cahn–Hilliard theory with the extended finite element method (XFEM). In the Cahn–Hilliard model the interface is considered to have a small but finite thickness, which circumvents explicit tracking of the interface. For the direct numerical simulation of particle‐suspended flows, we incorporate an XFEM, in which the particle domain is decoupled from the fluid domain. To cope with the movement of the particles, a temporary ALE scheme is used for the mapping of field variables at the previous time levels onto the computational mesh at the current time level. By combining the Cahn–Hilliard model with the XFEM, the particle motion at an interface can be simulated on a fixed Eulerian mesh without any need of re‐meshing. The model is general, but to demonstrate and validate the technique, here the dynamics of a single particle at a fluid–fluid interface is studied. First, we apply a small disturbance on a particle resting at an interface between two fluids, and investigate the particle movement towards its equilibrium position. In particular, we are interested in the effect of interfacial thickness, surface tension, particle size and viscosity ratio of two fluids on the particle movement towards its equilibrium position. Finally, we show the movement of a particle passing through multiple layers of fluids. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
This paper compares the numerical performance of the moment‐of‐fluid (MOF) interface reconstruction technique with Youngs, LVIRA, power diagram (PD), and Swartz interface reconstruction techniques in the context of a volume‐of‐fluid (VOF) based finite element projection method for the numerical simulation of variable‐density incompressible viscous flows. In pure advection tests with multiple materials MOF shows dramatic improvements in accuracy compared with the other methods. In incompressible flows where density differences determine the flow evolution, all the methods perform similarly for two material flows on structured grids. On unstructured grids, the second‐order MOF, LVIRA, and Swartz methods perform similarly and show improvement over the first‐order Youngs' and PD methods. For flow simulations with more than two materials, MOF shows increased accuracy in interface positions on coarse meshes. In most cases, the convergence and accuracy of the computed flow solution was not strongly affected by interface reconstruction method. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

16.
A new version of a numerical algorithm for the Lagrangian treatment of incompressible fluid flows with free surfaces is developed. The novel features of the present method are the adoptions of the Lagrangian finite element method and the velocity correction technique. The use of the velocity correction approach makes the computational scheme extremely simple in algorithmic structure. Hence, the present method is particularly attractive for large-scale problems. The techniques discussed here are applied to some two-dimensional sloshing problems, which may indicate the versatility and effectiveness of the present method.  相似文献   

17.
A novel high‐order finite volume scheme using flux correction methods in conjunction with structured finite differences is extended to low Mach and incompressible flows on strand grids. Flux correction achieves a high order by explicitly canceling low‐order truncation error terms across finite volume faces and is applied in unstructured layers of the strand grid. The layers are then coupled together using a source term containing summation‐by‐parts finite differences in the strand direction. A preconditioner is employed to extend the method to low speed and incompressible flows. We further extend the method to turbulent flows with the Spalart–Allmaras model. Laminar flow test cases indicate improvements in accuracy and convergence using the high‐order preconditioned method, while turbulent body‐of‐revolution flow results show improvements in only some cases, perhaps because of dominant errors arising from the turbulence model itself. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
A hybrid approach to couple finite difference method (FDM) with finite particle method (FPM) (ie, FDM-FPM) is developed to simulate viscous incompressible flows. FDM is a grid-based method that is convenient for implementing multiple or adaptive resolutions and is computationally efficient. FPM is an improved smoothed particle hydrodynamics (SPH), which is widely used in modeling fluid flows with free surfaces and complex boundaries. The proposed FDM-FPM leverages their advantages and is appealing in modeling viscous incompressible flows to balance accuracy and efficiency. In order to exchange the interface information between FDM and FPM for achieving consistency, stability, and convergence, a transition region is created in the particle region to maintain the stability of the interface between two methods. The mass flux algorithm is defined to control the particle creation and deletion. The mass is updated by N-S equations instead of the interpolation. In order to allow information exchange, an overlapping zone is defined near the interface. The information of overlapping zone is obtained by an FPM-type interpolation. Taylor-Green vortices and lid-driven shear cavity flows are simulated to test the accuracy and the conservation of the FDM-FPM hybrid approach. The standing waves and flows around NACA airfoils are further simulated to test the ability to deal with free surfaces and complex boundaries. The results show that FDM-FPM retains not only the high efficiency of FDM with multiple resolutions but also the ability of FPM in modeling free surfaces and complex boundaries.  相似文献   

19.
In this study, a method is developed to simulate the interaction between free surface flows and moving or deforming boundaries using the flux‐difference splitting scheme on the hybrid Cartesian/immersed boundary method. At each physical time step, the boundary is defined by an unstructured triangular surface grid. Immersed boundary (IB) nodes are distributed inside an instantaneous fluid domain based on edges crossing the boundary. At an IB node, dependent variables are reconstructed along the local normal line to the boundary. Inviscid fluxes are computed using Roe's flux‐difference splitting scheme for immiscible and incompressible fluids. The free surface is considered as a contact discontinuity in the density field. The motion of free surface is captured without any additional treatment along the fluid interface. The developed code is validated by comparisons with other experimental and computational results for a piston‐type wave maker, impulsive motion of a submerged circular cylinder, flow around a submerged hydrofoil, and Rayleigh–Taylor instability. The developed code is applied to simulate wave generation due to a continuously deforming bed beneath the free surface. The violent motion of a free surface caused by sloshing in a spherical tank is simulated. In this case, the free surface undergoes breakup and reconnection. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper we present a problem we have encountered using a stabilized finite element method on fixed grids for flows with interfaces modelled with the level set approach. We propose a solution based on enriching the pressure shape functions on the elements cut by the interface. The enrichment is used to enable the pressure gradient to be discontinuous at the interface, thus improving the ability to simulate the behaviour of fluids with different density under a gravitational force. The additional shape function used is local to each element and the corresponding degree of freedom can therefore be condensed prior to assembly, making the implementation quite simple on any existing finite element code. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号