首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a hybridized discontinuous Galerkin (HDG) method for the incompressible Reynolds-averaged Navier-Stokes equations coupled with the Spalart-Allmaras one-equation turbulence model. The method extends upon an HDG method recently introduced by Rhebergen and Wells for the incompressible Navier-Stokes equations. With a special choice of velocity and pressure spaces for both element and trace degrees of freedom (DOFs), the method returns pointwise divergence-free mean velocity fields and properly balances momentum and energy. We further examine the use of different polynomial degrees and meshes to see how the order of the scalar eddy viscosity affects the convergence of the mean velocity and pressure fields, specifically for the method of manufactured solutions. As is standard with HDG methods, static condensation can be employed to remove the element DOFs and thus dramatically reduce the global number of DOFs. Numerical results illustrate the effectiveness of the proposed methodology.  相似文献   

2.
Both compressible and incompressible Navier-Stokes solvers can be used and are used to solve incompressible turbulent flow problems. In the compressible case, the Mach number is then considered as a solver parameter that is set to a small value, M ≈0.1, in order to mimic incompressible flows. This strategy is widely used for high-order discontinuous Galerkin (DG) discretizations of the compressible Navier-Stokes equations. The present work raises the question regarding the computational efficiency of compressible DG solvers as compared to an incompressible formulation. Our contributions to the state of the art are twofold: Firstly, we present a high-performance DG solver for the compressible Navier-Stokes equations based on a highly efficient matrix-free implementation that targets modern cache-based multicore architectures with Flop/Byte ratios significantly larger than 1. The performance results presented in this work focus on the node-level performance, and our results suggest that there is great potential for further performance improvements for current state-of-the-art DG implementations of the compressible Navier-Stokes equations. Secondly, this compressible Navier-Stokes solver is put into perspective by comparing it to an incompressible DG solver that uses the same matrix-free implementation. We discuss algorithmic differences between both solution strategies and present an in-depth numerical investigation of the performance. The considered benchmark test cases are the three-dimensional Taylor-Green vortex problem as a representative of transitional flows and the turbulent channel flow problem as a representative of wall-bounded turbulent flows. The results indicate a clear performance advantage of the incompressible formulation over the compressible one.  相似文献   

3.
In this study, a high-order accurate numerical method is applied and examined for the simulation of the inviscid/viscous cavitating flows by solving the preconditioned multiphase Euler/Navier-Stokes equations on triangle elements. The formulation used here is based on the homogeneous equilibrium model considering the continuity and momentum equations together with the transport equation for the vapor phase with applying appropriate mass transfer terms for calculating the evaporation/condensation of the liquid/vapor phase. The spatial derivative terms in the resulting system of equations are discretized by the nodal discontinuous Galerkin method (NDGM) and an implicit dual-time stepping method is used for the time integration. An artificial viscosity approach is implemented and assessed for capturing the steep discontinuities in the interface between the two phases. The accuracy and robustness of the proposed method in solving the preconditioned multiphase Euler/Navier-Stokes equations are examined by the simulation of different two-dimensional and axisymmetric cavitating flows. A sensitivity study is also performed to examine the effects of different numerical parameters on the accuracy and performance of the solution of the NDGM. Indications are that the solution methodology proposed and applied here is based on the NDGM with the implicit dual-time stepping method and the artificial viscosity approach is accurate and robust for the simulation of the inviscid and viscous cavitating flows.  相似文献   

4.
In this paper we consider a discretization of the incompressible Navier-Stokes equations involving a second-order time scheme based on the characteristics method and a spatial discretization of finite element type. Theoretical and numerical analyses are detailed and we obtain stability results abnd optimal eror estimates on the velocity and pressure under a time step restriction less stringent than the standard Courant-Freidrichs-Levy condition. Finally, some numerical results obtained wiht the code N3S are shown which justify the interest of this scheme and its advantages with respect to an analogous first-order time scheme. © 1997 John Wiley & Sons, Ltd.  相似文献   

5.
We introduce an immersed high-order discontinuous Galerkin method for solving the compressible Navier-Stokes equations on non–boundary-fitted meshes. The flow equations are discretised with a mixed discontinuous Galerkin formulation and are advanced in time with an explicit time marching scheme. The discretisation meshes may contain simplicial (triangular or tetrahedral) elements of different sizes and need not be structured. On the discretisation mesh, the fluid domain boundary is represented with an implicit signed distance function. The cut-elements partially covered by the solid domain are integrated after tessellation with the marching triangle or tetrahedra algorithms. Two alternative techniques are introduced to overcome the excessive stable time step restrictions imposed by cut-elements. In the first approach, the cut-basis functions are replaced with the extrapolated basis functions from the nearest largest element. In the second approach, the cut-basis functions are simply scaled proportionally to the fraction of the cut-element covered by the solid. To achieve high-order accuracy, additional nodes are introduced on the element faces abutting the solid boundary. Subsequently, the faces are curved by projecting the introduced nodes to the boundary. The proposed approach is verified and validated with several two- and three-dimensional subsonic and hypersonic low Reynolds number flow applications, including the flow over a cylinder, a space capsule, and an aerospace vehicle.  相似文献   

6.
A robust, adaptive unstructured mesh refinement strategy for high-order Runge-Kutta discontinuous Galerkin method is proposed. The present work mainly focuses on accurate capturing of sharp gradient flow features like strong shocks in the simulations of two-dimensional inviscid compressible flows. A posteriori finite volume subcell limiter is employed in the shock-affected cells to control numerical spurious oscillations. An efficient cell-by-cell adaptive mesh refinement is implemented to increase the resolution of our simulations. This strategy enables to capture strong shocks without much numerical dissipation. A wide range of challenging test cases is considered to demonstrate the efficiency of the present adaptive numerical strategy for solving inviscid compressible flow problems having strong shocks.  相似文献   

7.
IntroductionLetΩcontainingzeropointbeasimply_connectedboundedopensetofR2 withsmoothboundaryΓandletΩ′denotethecomplementofΩ ∪Γ .TheexteriornonstationaryNavier_StokesproblemforafluidoccupyingΩ′consistsinfindingthevelocity u(x,t)ofthefluidanditspressure p(x ,…  相似文献   

8.
将流形方法应用于定常不可压缩粘性流动N-S方程的直接数值求解,建立基于Galerkin加权余量法的N-S方程数值流形格式,有限覆盖系统采用混合覆盖形式,即速度分量取1阶和压力取0阶多项式覆盖函数,非线性流形方程组采用直接线性化交替迭代方法和Nowton-Raphson迭代方法进行求解.将混合覆盖的四节点矩形流形单元用于阶梯流和方腔驱动流动的数值算例,以较少单元获得的数值解与经典数值解十分吻合.数值实验证明,流形方法是求解定常不可压缩粘性流动N-S方程有效的高精度数值方法.  相似文献   

9.
In this paper an implicit fractional step method for the solution of the two-dimensional, time-dependent, incompressible Navier-Stokes equations is presented. The current method was developed for use on an unstructured grid made up of triangles. The basic principles of this method are that the evaluation of the time evolution is split into intermediate steps and that for the spatial discretization of the flow equations a finite volume discretization on an unstructured triangular mesh is used. The present approach has been used to simulate viscous, laminar flows for various Reynolds numbers in test cases such as a backward-facing step, a square cavity and a channel with wavy boundaries.  相似文献   

10.
The idea of using velocity dilation for shock capturing is revisited in this paper, combined with the discontinuous Galerkin method. The value of artificial viscosity is determined using direct dilation instead of its higher order derivatives to reduce cost and degree of difficulty in computing derivatives. Alternative methods for estimating the element size of large aspect ratio and smooth artificial viscosity are proposed to further improve robustness and accuracy of the model. Several benchmark tests are conducted, ranging from subsonic to hypersonic flows involving strong shocks. Instead of adjusting empirical parameters to achieve optimum results for each case, all tests use a constant parameter for the model with reasonable success, indicating excellent robustness of the method. The model is only limited to third-order accuracy for smooth flows. This limitation may be relaxed by using a switch or a wall function. Overall, the model is a good candidate for compressible flows with potentials of further improvement.  相似文献   

11.
We present a spectral/hp element discontinuous Galerkin model for simulating shallow water flows on unstructured triangular meshes. The model uses an orthogonal modal expansion basis of arbitrary order for the spatial discretization and a third‐order Runge–Kutta scheme to advance in time. The local elements are coupled together by numerical fluxes, evaluated using the HLLC Riemann solver. We apply the model to test cases involving smooth flows and demonstrate the exponentially fast convergence with regard to polynomial order. We also illustrate that even for results of ‘engineering accuracy’ the computational efficiency increases with increasing order of the model and time of integration. The model is found to be robust in the presence of shocks where Gibbs oscillations can be suppressed by slope limiting. Copyright 2004 John Wiley & Sons, Ltd.  相似文献   

12.
In this study, a hybridizable discontinuous Galerkin method is presented for solving the incompressible Navier–Stokes equation. In our formulation, the convective part is linearized using a Picard iteration, for which there exists a necessary criterion for convergence. We show that our novel hybridized implementation can be used as an alternative method for solving a range of problems in the field of incompressible fluid dynamics. We demonstrate this by comparing the performance of our method with standard finite volume solvers, specifically the well‐established finite volume method of second order in space, such as the icoFoam and simpleFoam of the OpenFOAM package for three typical fluid problems. These are the Taylor–Green vortex, the 180‐degree fence case and the DFG benchmark. Our careful comparison yields convincing evidence for the use of hybridizable discontinuous Galerkin method as a competitive alternative because of their high accuracy and better stability properties. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
FOURIERNONLINEARGALERKINAPPROXIMATIONFORTHETWODIMENSIONALNAVIER-STOKESEQUATIONSHouYanren(侯延仁)(ReceivedJune1.1995.Communicated...  相似文献   

14.
In the paper, discontinuous Galerkin method is applied to simulation of incompressible free round turbulent jet using large eddy simulation with eddy viscosity approach. The solution algorithm is based on the classical projection method, but instead of the solution of the Poisson equation, a parabolic equation is advanced in pseudo‐time, which provides the pressure field ensuring the proper pressure–velocity coupling. For time and pseudo‐time integration, explicit Runge–Kutta method is employed. The computational meshes consist of hexahedral elements with flat faces. Within a given finite element, all flow variables are expressed with modal expansions of the same order (including velocity and pressure). Discretisation of the viscous terms in the Navier–Stokes equations and Laplacian in the Poisson equation is stabilised with mixed finite element approach. The correctness of the solution algorithm is verified in a commonly used test case of laminar flow in 3D lid‐driven cavity. The results of computations of the free jet are compared with experimental and numerical reference data, the latter obtained from the high‐order pseudospectral code. The statistics of centerline flow velocity – mean velocity and its fluctuations – show satisfactory agreement with the reference data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
In this work, we propose and analyse a discontinuous Galerkin (DG) method for the Stokes problem based on an artificial compressibility numerical flux. A crucial step in the definition of a DG method is the choice of the numerical fluxes, which affect both the accuracy and the order of convergence of the method. We propose here to treat the viscous and the inviscid terms separately. The former is discretized using the well‐known BRMPS method. For the latter, the problem is locally modified by adding an artificial compressibility term of the form (1/c2)(?p/?t) for the sole purpose of interface flux computation. The flux is obtained as the exact solution of a local Riemann problem. The analysis of the method extends the well‐established strategies for the DG discretization of the Laplacian to the resulting partially coercive problem. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The foundations of a new discontinuous Galerkin method for simulating compressible viscous flows with shocks on standard unstructured grids are presented in this paper. The new method is based on a discontinuous Galerkin formulation both for the advective and the diffusive contributions. High‐order accuracy is achieved by using a recently developed hierarchical spectral basis. This basis is formed by combining Jacobi polynomials of high‐order weights written in a new co‐ordinate system. It retains a tensor‐product property, and provides accurate numerical quadrature. The formulation is conservative, and monotonicity is enforced by appropriately lowering the basis order and performing h‐refinement around discontinuities. Convergence results are shown for analytical two‐ and three‐dimensional solutions of diffusion and Navier–Stokes equations that demonstrate exponential convergence of the new method, even for highly distorted elements. Flow simulations for subsonic, transonic and supersonic flows are also presented that demonstrate discretization flexibility using hp‐type refinement. Unlike other high‐order methods, the new method uses standard finite volume grids consisting of arbitrary triangulizations and tetrahedrizations. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
A novel class of weighted essentially nonoscillatory (WENO) schemes based on Hermite polynomials,termed as HWENO schemes,is developed and applied as limiters for high order discontinuous Galerkin (DG) method on triangular grids.The developed HWENO methodology utilizes high-order derivative information to keep WENO reconstruction stencils in the von Neumann neighborhood.A simple and efficient technique is also proposed to enhance the smoothness of the existing stencils,making higher-order scheme stable and simplifying the reconstruction process at the same time.The resulting HWENO-based limiters are as compact as the underlying DG schemes and therefore easy to implement.Numerical results for a wide range of flow conditions demonstrate that for DG schemes of up to fourth order of accuracy,the designed HWENO limiters can simultaneously obtain uniform high order accuracy and sharp,essentially non-oscillatory shock transition.  相似文献   

18.
In this paper, we develop a coupled continuous Galerkin and discontinuous Galerkin finite element method based on a split scheme to solve the incompressible Navier–Stokes equations. In order to use the equal order interpolation functions for velocity and pressure, we decouple the original Navier–Stokes equations and obtain three distinct equations through the split method, which are nonlinear hyperbolic, elliptic, and Helmholtz equations, respectively. The hybrid method combines the merits of discontinuous Galerkin (DG) and finite element method (FEM). Therefore, DG is concerned to accomplish the spatial discretization of the nonlinear hyperbolic equation to avoid using the stabilization approaches that appeared in FEM. Moreover, FEM is utilized to deal with the Poisson and Helmholtz equations to reduce the computational cost compared with DG. As for the temporal discretization, a second‐order stiffly stable approach is employed. Several typical benchmarks, namely, the Poiseuille flow, the backward‐facing step flow, and the flow around the cylinder with a wide range of Reynolds numbers, are considered to demonstrate and validate the feasibility, accuracy, and efficiency of this coupled method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
IntroductionThenonlinearGalerkinmethodisamulti_levelschemetofindtheapproximatesolutionforthedissipativePDE .ThismethodhasfirstmainlybeenaddressedbyFoias_Manley_Temam[1],Marion_Temam[2 ],Foias_Jolly_Kevrekidis_Titi[3]andDevulder_Marion_Titi[4 ]inthecaseofspect…  相似文献   

20.
首先导出了广义Stokes方程Petrov—Galerkin有限元数值解的当地事后误差估算公式;以非连续二阶鼓包(bump)函数空间为速度、压强误差的近似空间,该估算基于求解当地单元上的广义Stokes问题。然后,证明了误差估算值与精确误差之间的等价性。最后,将误差估算方法应用于Navier—Stokes环境,以进行不可压粘流计算中的网格自适应处理。数值实验中成功地捕获了多强度物理现象,验证了本文所发展的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号