首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the existence of solutions for the following fractional Hamiltonian systems $$ \left\{ \begin{array}{ll} - _tD^{\alpha}_{\infty}(_{-\infty}D^{\alpha}_{t}u(t))-\lambda L(t)u(t)+\nabla W(t,u(t))=0,\\[0.1cm] u\in H^{\alpha}(\mathbb{R},\mathbb{R}^n), \end{array} \right. ~~~~~~~~~~~~~~~~~(FHS)_\lambda $$ where $\alpha\in (1/2,1)$, $t\in \mathbb{R}$, $u\in \mathbb{R}^n$, $\lambda>0$ is a parameter, $L\in C(\mathbb{R},\mathbb{R}^{n^2})$ is a symmetric matrix, $W\in C^1(\mathbb{R} \times \mathbb{R}^n,\mathbb{R})$. Assuming that $L(t)$ is a positive semi-definite symmetric matrix, that is, $L(t)\equiv 0$ is allowed to occur in some finite interval $T$ of $\mathbb{R}$, $W(t,u)$ satisfies some superquadratic conditions weaker than Ambrosetti-Rabinowitz condition, we show that (FHS)$_\lambda$ has a solution which vanishes on $\mathbb{R}\setminus T$ as $\lambda \to \infty$, and converges to some $\tilde{u}\in H^{\alpha}(\R, \R^n)$. Here, $\tilde{u}\in E_{0}^{\alpha}$ is a solution of the Dirichlet BVP for fractional systems on the finite interval $T$. Our results are new and improve recent results in the literature even in the case $\alpha =1$.  相似文献   

2.
In this paper, we study a fractional differential equation $$^{c}D^{\alpha}_{0^{+}}u(t)+f(t,u(t))=0,\quad t\in(0, +\infty)$$ satisfying the boundary conditions: $$u^{\prime}(0)=0,\quad \lim_{t\rightarrow +\infty}\,^{c}D^{\alpha-1}_{0^{+}}u(t)=g(u),$$ where $1<\alpha\leqslant2$, $^{c}D^{\alpha}_{0^{+}}$ is the standard Caputo fractional derivative of order $\alpha$. The main tools used in the paper is contraction principle in the Banach space and the fixed point theorem due to D. O''Regan. Some the compactness criterion and existence of solutions are established.  相似文献   

3.
In this paper, we study the existence of solutions for the following impulsive fractional boundary-value problem:
$$\begin{aligned} {\left\{ \begin{array}{ll} - \frac{\mathrm{d}}{\mathrm{d}t} \Big (\frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t)) \Big ) = \lambda u (t) + f (t, u (t)), &{} t \ne t_j, \;\;\text {a.e.}\;\; t \in [0, T],\\ \Delta \Big (\frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j)) \Big ) = I_j (u (t_j)), &{} j = 1, 2, \ldots , n,\\ u (0) = u (T) = 0, \end{array}\right. } \end{aligned}$$
where \(\alpha \in (1/2, 1]\), \(0 = t_0< t_1< t_2< \cdots< t_n< t_{n +1} = T\), \(\lambda \) is a parameter and \(f :[0, T] \times {\mathbb {R}} \rightarrow {\mathbb {R}}\) and \(I_j : {\mathbb {R}} \rightarrow {\mathbb {R}}\), \(j = 1, \ldots , n\) are continuous functions and
$$\begin{aligned}&\Delta \left( \frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j)) \right) \\&\quad = \frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j^+) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j^+) \\&\qquad -\, \frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j^-) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j^-) ,\\&\frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j^+) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j^+)) \nonumber \\&\quad = \lim _{t \rightarrow t_j^+} \left( \frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t))\right) ,\\&\frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j^-) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j^-)) \\&\quad = \lim _{t \rightarrow t_j^-} \left( \frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t))\right) . \end{aligned}$$
By using critical point theory and variational methods, we give some new criteria to guarantee that the impulsive problems have at least one solution and infinitely many solutions.
  相似文献   

4.
In this paper using fountain theorems we study the existence of infinitely many solutions for fractional Schr\"{o}dinger-Maxwell equations \[\begin{cases} (-\Delta)^\alpha u+\lambda V(x)u+\phi u=f(x,u)-\mu g(x)|u|^{q-2}u, \text{ in } \mathbb R^3,\(-\Delta)^\alpha \phi=K_\alpha u^2, \text{ in } \mathbb R^3, \end{cases}\] where $\lambda,\mu >0$ are two parameters, $\alpha\in (0,1]$, $K_\alpha=\frac{\pi^{-\alpha}\Gamma(\alpha)}{\pi^{-(3-2\alpha)/2}\Gamma((3-2\alpha)/2)}$ and $(-\Delta)^\alpha$ is the fractional Laplacian. Under appropriate assumptions on $f$ and $g$ we obtain an existence theorem for this system.  相似文献   

5.
In this paper, we study the fractional stochastic heat equation driven by fractional Brownian motions of the form $$ du(t,x)=\left(-(-\Delta)^{\alpha/2}u(t,x)+f(t,x)\right)dt +\sum\limits^{\infty}_{k=1} g^k(t,x)\delta\beta^k_t $$ with $u(0,x)=u_0$, $t\in[0,T]$ and $x\in\mathbb{R}^d$, where $\beta^k=\{\beta^k_t,t\in[0,T]\},k\geq1$ is a sequence of i.i.d. fractional Brownian motions with the same Hurst index $H>1/2$ and the integral with respect to fractional Brownian motion is Skorohod integral. By adopting the framework given by Krylov, we prove the existence and uniqueness of $L_p$-solution to such equation.  相似文献   

6.
In this paper, the authors aim at proving two existence results of fractional differential boundary value problems of the form(P_(a,b)){D~αu(x) + f(x, u(x)) = 0, x ∈(0, 1),u(0) = u(1) = 0, D~(α-3)u(0) = a, u(1) =-b,where 3 α≤ 4, Dαis the standard Riemann-Liouville fractional derivative and a, b are nonnegative constants. First the authors suppose that f(x, t) =-p(x)t~σ, with σ∈(-1, 1)and p being a nonnegative continuous function that may be singular at x = 0 or x = 1and satisfies some conditions related to the Karamata regular variation theory. Combining sharp estimates on some potential functions and the Sch¨auder fixed point theorem, the authors prove the existence of a unique positive continuous solution to problem(P_(0,0)).Global estimates on such a solution are also obtained. To state the second existence result, the authors assume that a, b are nonnegative constants such that a + b 0 and f(x, t) = tφ(x, t), with φ(x, t) being a nonnegative continuous function in(0, 1)×[0, ∞) that is required to satisfy some suitable integrability condition. Using estimates on the Green's function and a perturbation argument, the authors prove the existence and uniqueness of a positive continuous solution u to problem(P_(a,b)), which behaves like the unique solution of the homogeneous problem corresponding to(P_(a,b)). Some examples are given to illustrate the existence results.  相似文献   

7.
In this paper, we study the fractional backward differential formula (FBDF) for the numerical solution of fractional delay differential equations (FDDEs) of the following form: \(\lambda _n {}_0^C D_t^{\alpha _n } y(t - \tau ) + \lambda _{n - 1} {}_0^C D_t^{\alpha _{n - 1} } y(t - \tau ) + \cdots + \lambda _1 {}_0^C D_t^{\alpha _1 } y(t - \tau ) + \lambda _{n + 1} y(t) = f(t), t \in [0,T]\), where \( \lambda _i \in \) \(\mathbb {R}\,(i = 1,\ldots ,n + 1)\,,\,\lambda _{n + 1} \ne 0,\,\, 0 \leqslant \alpha _1< \alpha _2< \cdots< \alpha _n < 1,\,\,T > 0,\) in Caputo sense. We find the Green’s functions for this equation corresponding to periodic/anti-periodic conditions in term of the Mittag-Leffler type. Our investigation is focused on stability properties of the numerical methods and we determine stability regions for the FDDEs. Finally, some numerical examples are given to show the effectiveness of the numerical method and the results are in excellent agreement with the theoretical analysis  相似文献   

8.
THEPERTURBATIONTHEORYFORTHESUMMABILITYOFSELFADJOINTOPERATORSC.W.LEUNGManuscriptreceivedNovember14,1994.DepartmentofMathem...  相似文献   

9.
设函数 $\alpha(t)$在$\bf R$上非负连续 和 $1\le{p}<+{\infty}$, 则 $L_{\alpha}^p=\{f: \int_{-{\infty}}^{\infty}|f(t)e^{-\alpha(t)}|^p\mathrm{d}t<{\infty}\}$ 是Banach空间. 本文中我们得到了一个复指数函数系在$L_{\alpha}^{p}$ 空间中稠密的充分必要条件.  相似文献   

10.
This paper deals with uniqueness of solutions for integral boundary value problem$\left\{\begin{array}{l}(D_q^{\alpha}u)(t)+f(t, u(t))=0,\ \ \ t\in(0,1),\ u(0)=D_qu(0)=0,\ \ u(1)=\lambda\int_0^1u(s){\mbox d}_qs, \end{array}\right.$ where $\alpha\in(2,3]$, $\lambda\in (0,[\alpha]_q)$, $D_q^{\alpha}$ denotes the $q$-fractional differential operator of order $\alpha$. By using the iterative method and one new fixed point theorem, we obtain that there exist a unique nontrivial solution and a unique positive solution.  相似文献   

11.
A necessary and sufficient condition is obtained for the incompleteness of complex exponential system in the weighted Banach space Lαp = {f:∫+∞∞ |f(t)e-α(t)|pdt +∞},where 1 ≤ p +∞ and α(t) is a weight on R.  相似文献   

12.
In this paper, we concern the existence of nontrivial ground state solutions of fractional $p$-Kirchhoff equation $$\left\{\begin{array}{ll} m\left(\|u\|^p\right) [(-\Delta)_p^su+V(x)|u|^{p-2}u] =f(x,u) \quad\text{in}\, \mathbb{R}^N, \vspace{0.2 cm}\\ \|u\|=\left(\int_{\mathbb{R}^{2N}}\frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}}dxdy +\int_{\mathbb{R}^N}V(x)|u|^pdx\right)^{\frac{1}{p}}, \end{array}\right.$$ where $m:[0,+\infty)\rightarrow [0,+\infty)$ is a continuous function, $(-\Delta)_p^s$ is the fractional $p$-Laplacian operator with $0相似文献   

13.
We prove the existence of positive solutions for the system$$\begin{align*}\begin{cases}-\Delta_{p} u =\lambda a(x){f(v)}{u^{-\alpha}},\qquad x\in \Omega,\\-\Delta_{q} v = \lambda b(x){g(u)}{v^{-\beta}},\qquad x\in \Omega,\\u = v =0, \qquad x\in\partial \Omega,\end{cases}\end{align*}$$where $\Delta_{r}z={\rm div}(|\nabla z|^{r-2}\nabla z)$, for $r>1$ denotes the r-Laplacian operator and $\lambda$ is a positive parameter, $\Omega$ is a bounded domain in $\mathbb{R}^{n}$, $n\geq1$ with sufficiently smooth boundary and $\alpha, \beta \in (0,1).$ Here $ a(x)$ and $ b(x)$ are $C^{1}$ sign-changingfunctions that maybe negative near the boundary and $f,g $ are $C^{1}$ nondecreasing functions, such that $f, g :\ [0,\infty)\to [0,\infty);$ $f(s)>0,$ $g(s)>0$ for $s> 0$, $\lim_{s\to\infty}g(s)=\infty$ and$$\lim_{s\to\infty}\frac{f(Mg(s)^{\frac{1}{q-1}})}{s^{p-1+\alpha}}=0,\qquad \forall M>0.$$We discuss the existence of positive weak solutions when $f$, $g$, $a(x)$ and $b(x)$ satisfy certain additional conditions. We employ the method of sub-supersolution to obtain our results.  相似文献   

14.
We provide two regularity criteria for the weak solutions of the 3D micropolar fluid equations, the first one in terms of one directional derivative of the velocity, i.e., $\partial_{3}u$, while the second one is is in terms of the behavior of the direction of the velocity $\frac{u}{|u|}$. More precisely, we prove that if \begin{equation*} \partial_{3}u \in L^{\beta}(0,T;L^{\alpha}(\mathbb{R}^{3}))\quad\text{ with }\frac{2}{\beta}+\frac{3}{\alpha}\leq 1+\frac{1}{\alpha}, 2&lt; \alpha \leq\infty, 2\leq\beta&lt; \infty; \end{equation*} or \begin{equation*} \operatorname{div}\left(\frac{u}{|u|}\right)\in L^{\frac{4}{1-2r}}(0,T;\dot{X}_{r}(\mathbb{R}^{3}))\quad \text{ with } 0\leq r&lt; \frac{1}{2}, \end{equation*} then the weak solution $(u(x,t),\omega(x,t))$ is regular on $\mathbb{R}^{3}\times [0,T]$. Here $\dot{X}_{r}(\mathbb{R}^{3})$ is the multiplier space.  相似文献   

15.
The authors present conditions under which every positive solution $x(t)$ of the integro--differential equation $x^{\prime \prime }(t)=a(t)+\int_{c}^{t}(t-s)^{\alpha-1}[e(s)+k(t,s)f(s,x(s))]ds, \quad c>1, \ \alpha >0,$ satisfies $x(t)=O(tA(t))\textrm{ as }t\rightarrow \infty,$ i.e, $\limsup_{t\rightarrow \infty }\frac{x(t)}{tA(t)}<\infty, \textrm{where} \ A(t)=\int_{c}^{t}a(s)ds.$ From the results obtained, they derive a technique that can be applied to some related integro--differential equations that are equivalent to certain fractional differential equations of Caputo type of any order.  相似文献   

16.
带一类时滞项的生物种群扩散模型的行波解   总被引:1,自引:0,他引:1  
本文利用Schauder不动点理论证明了微分积分方程组行波解u(x,t)=U(z),w(x,t)=W(z),z=xγ-ct的存在性.这个方程组描述了一类在植物上繁殖,且靠飞行在空中扩散的生物种群扩散过程.特别当时滞项,中积分核K(t)(反映种群繁殖模式)属于L1(0,∞)时,本文得到极限值W(-∞)(表示最终植物上种群密度)小于M.这个结论较符合生物实际.  相似文献   

17.
In this article, we consider some properties of positive solutions for a new conformable integro-differential equation with integral boundary conditions and a parameter $$ \left\{ \begin{array}{l} T_{\alpha}u(t)+\lambda f(t,u(t),I_{\alpha}u(t))=0,t\in[0,1],\u(0)=0,u(1)=\beta\int_{0}^{1}u(t)dt ,\beta\in[\frac 32,2), \ \end{array}\right.\nonumber $$ where $\alpha\in(1,2]$, $\lambda$ is a positive parameter, $T_{\alpha}$ is the usual conformable derivative and $I_{\alpha}$ is the conformable integral, $f:[0,1]\times\mathbf{R^{+}}\times\mathbf{R^{+}}\rightarrow \mathbf{R^{+}} $ is a continuous function, where $\mathbf{R^{+}}=[0,+\infty)$. We use a recent fixed point theorem for monotone operators in ordered Banach spaces, and then establish the existence and uniqueness of positive solutions for the boundary value problem. Further, we give an iterative sequence to approximate the unique positive solution and some good properties of positive solution about the parameter $\lambda$. A concrete example is given to better demonstrate our main result.  相似文献   

18.
We take a new approach to obtaining necessary and sufficient conditions for the incompleteness of exponential polynomials in L p α ,where L p α is the weighted Banach space of complex continuous functions f defined on the real axis R satisfying +∞ ∞ |f(t)| p e -α(t) dt) 1/p ,1 p ∞,and α(t) is a nonnegative continuous function defined on the real axis R.In this paper,the upper density of the sequence which forms the exponential polynomials is not required to be finite.In the study of weighted polynomial approximation,consideration of the case is new.  相似文献   

19.
本文研究了单位圆盘上从$L^{\infty}(\mathbb{D})$空间到Bloch型空间 $\mathcal{B}_\alpha$ 一类奇异积分算子$Q_\alpha, \alpha>0$的范数, 该算子可以看成投影算子$P$ 的推广,定义如下$$Q_\alpha f(z)=\alpha \int_{\mathbb{D}}\frac{f(w)}{(1-z\bar{w})^{\alpha+1}}\d A(w),$$ 同时我们也得到了该算子从 $C(\overline{\mathbb{D}})$空间到小Bloch型空间$\mathcal{B}_{\alpha,0}$上的范数.  相似文献   

20.
考虑了R~n上n(n≥2)维向列型液晶流(u,d)当初值属于Q_α~(-1)(R~n,R~n)×Q_α(R~n,S~2)(其中α∈(0,1))时Cauchy问题的适定性,这里的Q_α(R~n)最早由Essen,Janson,Peng和Xiao(见[Essen M,Janson S,Peng L,Xiao J.Q space of several real variables,Indiana Univ Math J,2000,49:575-615])引入,是指由R~n中满足的所有可测函数f全体所组成的空间.上式左端在取遍Rn中所有以l(I)为边长且边平行于坐标轴的立方体I的全体中取上确界,而Q_α~(-1)(R~n):=▽·Q_α(R~n).最后证明了解(u,d)在类C([0,T);Q_(α,T)~(-1)(R~n,R~n))∩L_(loc)~∞((0,T);L~∞(R~n,R~n))×C([0,T);Q_α,T(R~n,S~2))∩L_(loc)~∞((0,T);W~(1,∞)(R~n,S~2))(其中0T≤∞)中是唯一的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号