共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Numerical Methods for Partial Differential Equations》2018,34(4):1301-1323
In this article, a fast‐iterative method and a fast‐direct method is proposed for solving one‐dimensional and two‐dimensional tempered fractional diffusion equations with constant coefficients. The proposed iterative method is accelerated by circulant preconditioning which is shown to converge superlinearly while the proposed direct method is based on circulant and skew‐circulant representation for Toeplitz matrix inversion. In one‐dimensional case, the operation cost of the proposed methods are both shown to be with memory requirement in each time step, where is the number of spatial nodes. With the alternating direction implicit method, it is proven that the proposed fast solution algorithms can be extended to handle two‐dimensional tempered fractional diffusion equations with operation cost and memory requirement in each time step, where the number of spatial nodes in ‐direction and ‐direction both equal to . Numerical examples are provided to illustrate the effectiveness and efficiency of the proposed methods. 相似文献
3.
Ping‐Fei Dai Qing‐Biao Wu Sheng‐Feng Zhu 《Numerical Methods for Partial Differential Equations》2019,35(2):699-715
We construct a class of quasi‐Toeplitz splitting iteration methods to solve the two‐sided unsteady space‐fractional diffusion equations with variable coefficients. By making full use of the structural characteristics of the coefficient matrix, the method only requires computational costs of O(n log n) with n denoting the number of degrees of freedom. We develop an appropriate circulant matrix to replace the Toeplitz matrix as a preconditioner. We discuss the spectral properties of the quasi‐circulant splitting preconditioned matrix. Numerical comparisons with existing approaches show that the present method is both effective and efficient when being used as matrix splitting preconditioners for Krylov subspace iteration methods. 相似文献
4.
5.
6.
一类空间分数阶扩散方程经过有限差分离散后所得到的离散线性方程组的系数矩阵是两个对角矩阵与Toeplitz型矩阵的乘积之和.在本文中,对于几乎各向同性的二维或三维空间分数阶扩散方程的离散线性方程组,采用预处理Krylov子空间迭代方法,我们利用其系数矩阵的特殊结构和具体性质构造了一类分块快速正则Hermite分裂预处理子.通过理论分析,我们证明了所对应的预处理矩阵的特征值大部分都聚集于1的附近.数值实验也表明,这类分块快速正则Hermite分裂预处理子可以明显地加快广义极小残量(GMRES)方法和稳定化的双共轭梯度(BiCGSTAB)方法等Krylov子空间迭代方法的收敛速度. 相似文献
7.
In this paper, we use a semi-discrete and a padé approximation method to propose a new difference scheme for solving convection–diffusion problems. The truncation error of the difference scheme is O(h4+τ5). It is shown through analysis that the scheme is unconditionally stable. Numerical experiments are conducted to test its high accuracy and to compare it with Crank–Nicolson method. 相似文献
8.
Diagonal and Toeplitz splitting iteration methods for diagonal‐plus‐Toeplitz linear systems from spatial fractional diffusion equations 下载免费PDF全文
The finite difference discretization of the spatial fractional diffusion equations gives discretized linear systems whose coefficient matrices have a diagonal‐plus‐Toeplitz structure. For solving these diagonal‐plus‐Toeplitz linear systems, we construct a class of diagonal and Toeplitz splitting iteration methods and establish its unconditional convergence theory. In particular, we derive a sharp upper bound about its asymptotic convergence rate and deduct the optimal value of its iteration parameter. The diagonal and Toeplitz splitting iteration method naturally leads to a diagonal and circulant splitting preconditioner. Analysis shows that the eigenvalues of the corresponding preconditioned matrix are clustered around 1, especially when the discretization step‐size h is small. Numerical results exhibit that the diagonal and circulant splitting preconditioner can significantly improve the convergence properties of GMRES and BiCGSTAB, and these preconditioned Krylov subspace iteration methods outperform the conjugate gradient method preconditioned by the approximate inverse circulant‐plus‐diagonal preconditioner proposed recently by Ng and Pan (M.K. Ng and J.‐Y. Pan, SIAM J. Sci. Comput. 2010;32:1442‐1464). Moreover, unlike this preconditioned conjugate gradient method, the preconditioned GMRES and BiCGSTAB methods show h‐independent convergence behavior even for the spatial fractional diffusion equations of discontinuous or big‐jump coefficients. 相似文献
9.
10.
M. M. Lafisheva M. Kh. Shkhanukov-Lafishev 《Computational Mathematics and Mathematical Physics》2008,48(10):1875-1884
Locally-one-dimensional difference schemes for the fractional diffusion equation in multidimensional domains are considered. Stability and convergence of locally one-dimensional schemes for this equation are proved. 相似文献
11.
A high order finite difference-spectral method is derived for solving space fractional diffusion equations,by combining the second order finite difference method in time and the spectral Galerkin method in space.The stability and error estimates of the temporal semidiscrete scheme are rigorously discussed,and the convergence order of the proposed method is proved to be O(τ2+Nα-m)in L2-norm,whereτ,N,αand m are the time step size,polynomial degree,fractional derivative index and regularity of the exact solution,respectively.Numerical experiments are carried out to demonstrate the theoretical analysis. 相似文献
12.
Yuxiang Liang Zhongsheng Yao Zhibo Wang 《Numerical Methods for Partial Differential Equations》2020,36(1):154-172
In this paper, a fast high order difference scheme is first proposed to solve the time fractional telegraph equation based on the ℱℒ 2-1σ formula for the Caputo fractional derivative, which reduces the storage and computational cost for calculation. A compact scheme is then presented to improve the convergence order in space. The unconditional stability and convergence in maximum norm are proved for both schemes, with the accuracy order and , respectively. Difficulty arising from the two Caputo fractional derivatives is overcome by some detailed analysis. Finally, we carry out numerical experiments to show the efficiency and accuracy, by comparing with the ℒ 2-1σ method. 相似文献
13.
Space fractional convection diffusion equation describes physical phenomena where particles or energy (or other physical quantities) are transferred inside a physical system due to two processes: convection and superdiffusion. In this paper, we discuss the practical alternating directions implicit method to solve the two-dimensional two-sided space fractional convection diffusion equation on a finite domain. We theoretically prove and numerically verify that the presented finite difference scheme is unconditionally von Neumann stable and second order convergent in both space and time directions. 相似文献
14.
We study the preconditioned iterative methods for the linear systems arising from the numerical solution of the multi-dimensional space fractional diffusion equations. A sine transform based preconditioning technique is developed according to the symmetric and skew-symmetric splitting of the Toeplitz factor in the resulting coefficient matrix. Theoretical analyses show that the upper bound of relative residual norm of the GMRES method when applied to the preconditioned linear system is mesh-independent which implies the linear convergence. Numerical experiments are carried out to illustrate the correctness of the theoretical results and the effectiveness of the proposed preconditioning technique. 相似文献
15.
Analytical approximate solutions of Riesz fractional diffusion equation and Riesz fractional advection–dispersion equation involving nonlocal space fractional derivatives 下载免费PDF全文
In this paper, we consider the analytical solutions of fractional partial differential equations (PDEs) with Riesz space fractional derivatives on a finite domain. Here we considered two types of fractional PDEs with Riesz space fractional derivatives such as Riesz fractional diffusion equation (RFDE) and Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second‐order space derivative with the Riesz fractional derivative of order α∈(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first‐order and second‐order space derivatives with the Riesz fractional derivatives of order β∈(0,1] and of order α∈(1,2] respectively. Here the analytic solutions of both the RFDE and RFADE are derived by using modified homotopy analysis method with Fourier transform. Then, we analyze the results by numerical simulations, which demonstrate the simplicity and effectiveness of the present method. Here the space fractional derivatives are defined as Riesz fractional derivatives. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
16.
Jian-Gen Liu Xiao-Jun Yang Yi-Ying Feng Lu-Lu Geng 《Mathematical Methods in the Applied Sciences》2023,46(1):267-272
The time fractional diffusion wave equation, which can be used to describe wave diffusion process in this article, was studied. First of all, the diffusion wave equation can be extended to a generalized form in the sense of the regularized version of the -Hilfer–Prabhakar ( -H-P) fractional operator involving the -Mittag- function. Then, the analytical solution can be obtained for this considered equation by using the Laplace transform method and the Fourier transform method. As a result, a novel and general solution have been found. The unconventional solution may show new result and phenomenon to wave diffusion process. Thereby, this research provides a window for discovering new diffusion mechanisms. 相似文献
17.
Huan Liu Xiangcheng Zheng Hongfei Fu Hong Wang 《Numerical Methods for Partial Differential Equations》2021,37(1):818-835
In this article, we develop a Crank–Nicolson alternating direction implicit finite volume method for time‐dependent Riesz space‐fractional diffusion equation in two space dimensions. Norm‐based stability and convergence analysis are given to show that the developed method is unconditionally stable and of second‐order accuracy both in space and time. Furthermore, we develop a lossless matrix‐free fast conjugate gradient method for the implementation of the numerical scheme, which only has memory requirement and computational complexity per iteration with N being the total number of spatial unknowns. Several numerical experiments are presented to demonstrate the effectiveness and efficiency of the proposed scheme for large‐scale modeling and simulations. 相似文献
18.
In this paper, we consider the numerical solution of a fractional partial differential equation with Riesz space fractional derivatives (FPDE-RSFD) on a finite domain. Two types of FPDE-RSFD are considered: the Riesz fractional diffusion equation (RFDE) and the Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second-order space derivative with the Riesz fractional derivative of order α(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order β(0,1) and of order α(1,2], respectively. Firstly, analytic solutions of both the RFDE and RFADE are derived. Secondly, three numerical methods are provided to deal with the Riesz space fractional derivatives, namely, the L1/L2-approximation method, the standard/shifted Grünwald method, and the matrix transform method (MTM). Thirdly, the RFDE and RFADE are transformed into a system of ordinary differential equations, which is then solved by the method of lines. Finally, numerical results are given, which demonstrate the effectiveness and convergence of the three numerical methods. 相似文献
19.
Hong Sun Zhi‐Zhong Sun Guang‐Hua Gao 《Numerical Methods for Partial Differential Equations》2016,32(3):970-1001
In this article, motivated by Alikhanov's new work (Alikhanov, J Comput Phys 280 (2015), 424–438), some difference schemes are proposed for both one‐dimensional and two‐dimensional time‐fractional wave equations. The obtained schemes can achieve second‐order numerical accuracy both in time and in space. The unconditional convergence and stability of these schemes in the discrete H1‐norm are proved by the discrete energy method. The spatial compact difference schemes with the results on the convergence and stability are also presented. In addition, the three‐dimensional problem is briefly mentioned. Numerical examples illustrate the efficiency of the proposed schemes. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 970–1001, 2016 相似文献
20.
Xian-Ming Gu Yong-Liang Zhao Xi-Le Zhao Bruno Carpentieri & Yu-Yun Huang 《高等学校计算数学学报(英文版)》2021,14(4):893-919
The $p$-step backward difference formula (BDF) for solving systems of
ODEs can be formulated as all-at-once linear systems that are solved by parallel-in-time preconditioned Krylov subspace solvers (see McDonald et al. [36] and Lin
and Ng [32]). However, when the BDF$p$ (2 ≤ $p$ ≤ 6) method is used to solve time-dependent PDEs, the generalization of these studies is not straightforward as $p$-step
BDF is not selfstarting for $p$ ≥ 2. In this note, we focus on the 2-step BDF which is
often superior to the trapezoidal rule for solving the Riesz fractional diffusion equations, and show that it results into an all-at-once discretized system that is a low-rank
perturbation of a block triangular Toeplitz system. We first give an estimation of the
condition number of the all-at-once systems and then, capitalizing on previous work,
we propose two block circulant (BC) preconditioners. Both the invertibility of these
two BC preconditioners and the eigenvalue distributions of preconditioned matrices
are discussed in details. An efficient implementation of these BC preconditioners is
also presented, including the fast computation of dense structured Jacobi matrices.
Finally, numerical experiments involving both the one- and two-dimensional Riesz
fractional diffusion equations are reported to support our theoretical findings. 相似文献