首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
The glutamine binding protein (GlnBP) binds l ‐glutamine and cooperates with its cognate transporters during glutamine uptake. Crystal structure analysis has revealed an open and a closed conformation for apo‐ and holo‐GlnBP, respectively. However, the detailed conformational dynamics have remained unclear. Herein, we combined NMR spectroscopy, MD simulations, and single‐molecule FRET techniques to decipher the conformational dynamics of apo‐GlnBP. The NMR residual dipolar couplings of apo‐GlnBP were in good agreement with a MD‐derived structure ensemble consisting of four metastable states. The open and closed conformations are the two major states. This four‐state model was further validated by smFRET experiments and suggests the conformational selection mechanism in ligand recognition of GlnBP.  相似文献   

3.
The investigation of multi‐site ligand–protein binding and multi‐step mechanisms is highly demanding. In this work, advanced NMR methodologies such as 2D 1H–15N line‐shape analysis, which allows a reliable investigation of ligand binding occurring on micro‐ to millisecond timescales, have been extended to model a two‐step binding mechanism. The molecular recognition and complex uptake mechanism of two bile salt molecules by lipid carriers is an interesting example that shows that protein dynamics has the potential to modulate the macromolecule–ligand encounter. Kinetic analysis supports a conformational selection model as the initial recognition process in which the dynamics observed in the apo form is essential for ligand uptake, leading to conformations with improved access to the binding cavity. Subsequent multi‐step events could be modelled, for several residues, with a two‐step binding mechanism. The protein in the ligand‐bound state still exhibits a conformational rearrangement that occurs on a very slow timescale, as observed for other proteins of the family. A global mechanism suggesting how bile acids access the macromolecular cavity is thus proposed.  相似文献   

4.
A fundamental question in protein science is how the inherent dynamics of a protein influence its function. If this function involves interactions with a ligand, the protein-ligand encounter has the potential to modulate the protein dynamics. This study reveals how site-specific mobility can be modulated by the ligand to facilitate high affinity binding. We have investigated the mechanism of retinol uptake by the cellular retinol-binding protein type I (CRBP) using line shape analysis of NMR signals. The highly similar structures of apo- and holo-CRBP exhibit closed conformations that seemingly offer no access to ligand, yet the protein binds retinol rapidly and with high affinity. NMR line shape analysis reveals how protein dynamics resolve this apparent paradox. An initial nonspecific encounter with the ligand induces the formation of long-lived conformers in the portal region of CRBP suggesting a mechanism how retinol accesses the cavity.  相似文献   

5.
The interdomain movements of the ligand binding domain (LBD) of mGluR1 in response to agonist or antagonist binding are studied by 2 ns molecular dynamics (MD) simulations. Our results indicate that MD is able to reproduce many of the experimentally determined features of the open and closed conformations of LBD. Analysis of the ligand behavior over time allows to delineate some of the molecular determinants responsible for the agonist-induced or antagonist-blocked LBD responses.  相似文献   

6.
Glutamine‐binding protein (GlnBP) displays an apo, “open” and a holo, “closed” crystal form, mutually related by a rigid‐body reorientation of its domains. A fundamental question about such large‐scale conformational transitions, whether the closed state exists in the absence of ligand, is controversial in the case of GlnBP. NMR observations have indicated no evidence of the closed form, whereas experimentally validated computations have suggested a remarkable ca. 40 % population. Herein, a paramagnetic NMR strategy designed to detect the putative apo‐closed species shows that a major population of the latter is highly improbable. Further, NMR residual dipolar couplings collected under three anisotropic conditions do not reveal differential domain alignment and establish that the average solution conformation is satisfied by the apo‐open crystal structure. Our results indicate that the computational prediction of large‐scale interdomain motions is not trivial and may lead to erroneous conclusions without proper experimental validation.  相似文献   

7.
The 41 amino acid neuropeptide, corticotropin-releasing factor (CRF) and its associated receptors CRF1-R and CRF2-R have been targeted for treating stress related disorders. Both CRF1-R and CRF2-R belong to the class B G-protein coupled receptors for which little information is known regarding the small molecule antagonist binding characteristics. However, it has been shown recently that different non-peptide allosteric ligands stabilize different receptor conformations for CRF1-R and hence an understanding of the ligand induced receptor conformational changes is important in the pharmacology of ligand binding. In this study, we modeled the receptor and identified the binding sites of representative small molecule allosteric antagonists for CRF1-R. The predicted binding sites of the investigated compounds are located within the transmembrane (TM) domain encompassing TM helices 3, 5 and 6. The docked compounds show strong interactions with H228 on TM3 and M305 on TM5 that have also been implicated in the binding by site directed mutation studies. H228 forms a hydrogen bond of varied strengths with all the antagonists in this study and this is in agreement with the decreased binding affinity of several compounds with H228F mutation. Also mutating M305 to Ile showed a sharp decrease in the calculated binding energy whereas the binding energy loss on M305 to Leu was less significant. These results are in qualitative agreement with the decrease in binding affinities observed experimentally. We further predicted the conformational changes in CRF1-R induced by the allosteric antagonist NBI-27914. Movement of TM helices 3 and 5 are dominant and generates three degenerate conformational states two of which are separated by an energy barrier from the third, when bound to NBI-27914. Binding of NBI-27914 was predicted to improve the interaction of the ligand with M305 and also enhanced the aromatic stacking between the ligand and F232 on TM3. A virtual ligand screening of ~13,000 compounds seeded with ~350 CRF1-R specific active antagonists performed on the NBI-27914 stabilized conformation of CRF1-R yielded a 44% increase in enrichment compared to the initially modeled receptor conformation at a 10% cutoff. The NBI-27914 stabilized conformation also shows a high enrichment for high affinity antagonists compared to the weaker ones. Thus, the conformational changes induced by NBI-27914 improved the ligand screening efficiency of the CRF1-R model and demonstrate a generalized application of the method in drug discovery.  相似文献   

8.
Domain mobility plays an essential role in the biological function of multidomain systems. The characteristic times of domain motions fall into the interval from nano- to milliseconds, amenable to NMR studies. Proper analysis of NMR relaxation data for these systems in solution has to account for interdomain motions, in addition to the overall tumbling and local intradomain dynamics. Here we propose a model of interdomain mobility in a multidomain protein, which considers domain reorientations as exchange/interconversion between two distinct conformational states of the molecule, combined with fully anisotropic overall tumbling. Analysis of 15N-relaxation data for Lys48-linked diubiquitin at pH 4.5 and 6.8 showed that this model adequately fits the experimental data and allows characterization of both structural and motional properties of diubiquitin, thus providing information about the relative orientation of ubiquitin domains in both interconverting states. The analysis revealed that the two domains reorient on a time scale of 9-30 ns, with the amplitudes sufficient for allowing a protein ligand access to the binding sites sequestered at the interface in the closed conformation. The analysis of a possible mechanism controlling the equilibrium between the interconverting states in diubiquitin points toward protonation of His68, which results in three different charged states of the molecule, with zero, +e, and +2e net charge. Only two of the three states are noticeably populated at pH 4.5 or 6.8, which assures applicability of the two-state model to diubiquitin at these conditions. We also compare our model with the "extended model-free" approach and discuss possible future developments of the model.  相似文献   

9.
10.
Conformational change during protein-ligand binding may significantly affect both the binding mechanism and the rate constant. Most earlier theories and simulations treated conformational change as stochastic gating with transition rates between reactive and nonreactive conformations uncoupled to ligand binding. Recently, we introduced a dual-transition-rates model in which the transition rates between reactive and nonreactive conformations depend on the protein-ligand distance [H.-X. Zhou, Biophys. J. 98, L15 (2010)]. Analytical results of that model showed that the apparent binding mechanism switches from conformational selection to induced fit, when the rates of conformational transitions increase from being much slower than the diffusional approach of the protein-ligand pair to being much faster. The conformational-selection limit (k(CS)) and the induced-fit limit (k(IF)) provide lower and upper bounds, respectively, for the binding rate constant. Here we introduce a general model in which the energy surface of the protein in conformational space is coupled to ligand binding, and present a method for calculating the binding rate constant from Brownian dynamics simulations. Analytical and simulation results show that, for an energy surface that switches from favoring the nonreactive conformation while the ligand is away to favoring the reactive conformation while the ligand is near, k(CS) and k(IF) become close and, thus, provide tight bounds to the binding rate constant. This finding has significant mechanistic implications and presents routes for obtaining good estimates of the rate constant at low cost.  相似文献   

11.
The broad range of characteristic motions in proteins has limited the applicability of molecular dynamics simulations in studying large-scale conformational transitions. We present an approximate method, making use of standard MD simulations and using a much larger integration time step, to obtain the structural changes for slow systematic motions of large complex systems. We show the applicability of this method by simulating the open to closed Calmodulin calcium binding domain conformational changes. Starting with the Ca2+-bound X-ray structure, and after the removal of the Ca2+ ions, our calculation yielded intermediate conformations during the rearrangement of helices in each Ca2+ binding pocket, leading to a structure with a lowest rmsd of 1.56 A compared to the NMR apo-calmodulin structure.  相似文献   

12.
An extended accelerated molecular dynamics (AMD) methodology called adaptive AMD is presented. Adaptive AMD (Ad-AMD) is an efficient and robust conformational space sampling algorithm that is particularly-well suited to proteins with highly structured potential energy surfaces exhibiting complex, large-scale collective conformational transitions. Ad-AMD simulations of substrate-free P450cam reveal that this system exists in equilibrium between a fully and partially open conformational state. The mechanism for substrate binding depends on the size of the ligand. Larger ligands enter the P450cam binding pocket, and the resulting substrate-bound system is trapped in an open conformation via a population shift mechanism. Small ligands, which fully enter the binding pocket, cause an induced-fit mechanism, resulting in the formation of an energetically stable closed conformational state. These results are corroborated by recent experimental studies and potentially provide detailed insight into the functional dynamics and conformational behavior of the entire cytochrome-P450 superfamily.  相似文献   

13.
The translocator protein (TSPO) is an integral membrane protein that interacts with a wide variety of endogenous ligands, such as cholesterol and porphyrins, and is also the target for several small molecules with substantial in vivo efficacy. When complexed with the TSPO‐specific radioligand (R)‐PK11195, TSPO folds into a rigid five‐helix bundle. However, little is known about the structure and dynamics of TSPO in the absence of high‐affinity ligands. By means of NMR spectroscopy, we show that TSPO exchanges between multiple conformations in the absence of (R)‐PK11195. Extensive motions on time scales from pico‐ to microseconds occur all along the primary sequence of the protein, leading to a loss of stable tertiary interactions and local unfolding of the helical structure in the vicinity of the ligand‐binding site. The flexible nature of TSPO highlights the importance of conformational plasticity in integral membrane proteins.  相似文献   

14.
Human dipeptidyl peptidase III (DPP III) is a two domain metallo-peptidase from the M49 family. The wide interdomain cleft and broad substrate specificity suggest that this enzyme could experience significant conformational change. Long (>100 ns) molecular dynamics (MD) simulations of DPP III revealed large range conformational changes of the protein, suggesting the pre-existing equilibrium model for a substrate binding. The binding free energy calculations revealed tighter binding of the preferred synthetic substrate Arg-Arg-2-naphtylamide to the "closed" than to the "open" DPP III conformation. Our assumption that Asp372 plays a crucial role in the large scale interdomain closure was proved by the MD simulations of the Asp372Ala variant. During the same simulation time, the variant remained more "open" than the wild type protein. Apparently, Ala was not as efficient as Asp in establishing the interdomain interactions. According to the MM-PBSA calculations, the electrostatic component of the free energy of solvation turned out to be higher for the "closed" protein than for its less compact form. However, the gain in entropy due to water released from the interdomain cleft nicely balanced this negative effect.  相似文献   

15.
A three-step approach for multiscale modeling of protein conformational changes is presented that incorporates information about preferred directions of protein motions into a geometric simulation algorithm. The first two steps are based on a rigid cluster normal-mode analysis (RCNMA). Low-frequency normal modes are used in the third step (NMSim) to extend the recently introduced idea of constrained geometric simulations of diffusive motions in proteins by biasing backbone motions of the protein, whereas side-chain motions are biased toward favorable rotamer states. The generated structures are iteratively corrected regarding steric clashes and stereochemical constraint violations. The approach allows performing three simulation types: unbiased exploration of conformational space; pathway generation by a targeted simulation; and radius of gyration-guided simulation. When applied to a data set of proteins with experimentally observed conformational changes, conformational variabilities are reproduced very well for 4 out of 5 proteins that show domain motions, with correlation coefficients r > 0.70 and as high as r = 0.92 in the case of adenylate kinase. In 7 out of 8 cases, NMSim simulations starting from unbound structures are able to sample conformations that are similar (root-mean-square deviation = 1.0-3.1 ?) to ligand bound conformations. An NMSim generated pathway of conformational change of adenylate kinase correctly describes the sequence of domain closing. The NMSim approach is a computationally efficient alternative to molecular dynamics simulations for conformational sampling of proteins. The generated conformations and pathways of conformational transitions can serve as input to docking approaches or as starting points for more sophisticated sampling techniques.  相似文献   

16.
We have investigated the efficacy of generating multiple sidechain conformations using a rotamer library in order to find the experimentally observed ligand binding site conformation of a protein in the presence of a bound ligand. We made use of a recently published algorithm that performs an exhaustive conformational search using a rotamer library to enumerate all possible sidechain conformations in a binding site. This approach was applied to a dataset of proteins whose structures were determined by X-ray and NMR methods. All chosen proteins had two or more structures, generally involving different bound ligands. By taking one of these structures as a reference, we were able in most cases to successfully reproduce the experimentally determined conformations of the other structures, as well as to suggest alternative low-energy conformations of the binding site. In those few cases where this procedure failed, we observed that the bound ligand had induced a high-energy conformation of the binding site. These results suggest that for most proteins that exhibit limited backbone motion, ligands tend to bind to low energy conformations of their binding sites. Our results also reveal that it is possible in most cases to use a rotamer search-based approach to predict alternative low-energy protein binding site conformations that can be used by different ligands. This opens the possibility of incorporating alternative binding site conformations to improve the efficacy of docking and structure-based drug design algorithms.  相似文献   

17.
18.
Summary Crystallographic database studies and molecular dynamics simulations in different media have enabled us to sample the conformational space of a GABAB antagonist. As a result, we have defined a pharmacophoric pattern for GABAB antagonists. This study has led us to compare the conformational preferences deduced from database studies and molecular dynamics simulations. The influence of the medium on the conformations has also been investigated.  相似文献   

19.
α‐Mannosidases and α‐mannanases have attracted attention for the insight they provide into nucleophilic substitution at the hindered anomeric center of α‐mannosides, and the potential of mannosidase inhibitors as cellular probes and therapeutic agents. We report the conformational itinerary of the family GH76 α‐mannanases studied through structural analysis of the Michaelis complex and synthesis and evaluation of novel aza/imino sugar inhibitors. A Michaelis complex in an OS2 conformation, coupled with distortion of an azasugar in an inhibitor complex to a high energy B2,5 conformation are rationalized through ab initio QM/MM metadynamics that show how the enzyme surface restricts the conformational landscape of the substrate, rendering the B2,5 conformation the most energetically stable on‐enzyme. We conclude that GH76 enzymes perform catalysis using an itinerary that passes through OS2 and B2,5 conformations, information that should inspire the development of new antifungal agents.  相似文献   

20.
The key to understand a protein's function often lies in its conformational dynamics. We develop a coarse-grained variational model to investigate the interplay between structural transitions, conformational flexibility, and function of the N-terminal calmodulin domain (nCaM). In this model, two energy basins corresponding to the "closed" apo conformation and "open" holo conformation of nCaM are coupled by a uniform interpolation parameter. The resulting detailed transition route from our model is largely consistent with the recently proposed EFbeta-scaffold mechanism in EF-hand family proteins. We find that the N-terminal parts of the calcium binding loops shows higher flexibility than the C-terminal parts which form this EFbeta-scaffold structure. The structural transition of binding loops I and II are compared in detail. Our model predicts that binding loop II, with higher flexibility and earlier structural change than binding loop I, dominates the open/closed conformational transition in nCaM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号