首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对污染扩散方程提出了时间任意阶精度的显式格式,并对该格式的稳定性和精度进行了分析,理论结果表明:一阶精度的计算格式是传统的显格式,其稳定条件为:s≤1/2(s=D.Δt/Δx2,D为扩散系数,Δt为时间步长,Δx为空间步长),随着保留精度阶数的增加,稳定性范围也会随之增大;当保留无穷阶精度时,格式是无条件稳定的。这也就从一个侧面揭示了稳定性与时间精度之间的关系,为高性能数值计算格式的构思提供了可以借鉴的原则。数值算例的结果表明,本文格式具有一定的实用性。  相似文献   

2.
IntroductionSystemidentificationisakindofnewmethodforbuildingmathematicalmodel,themethodhasbeenwidelyappliedinengineering.Thebackgroundisindustrialprocessautomaticcontrol.Withoutanyknowledgeaboutacomplexindustryprocessinnermechanism,usingtheinputandout…  相似文献   

3.
The artificial viscosity method for three—dimensional unsteady gas flow is developed. The stability of finite difference scheme in this case is investigated. The necessary and sufficient conditions for the stability are obtained; these conditions formally agree with the two-dimensional result in Rusanov's paper.  相似文献   

4.
This paper presents a free‐surface correction (FSC) method for solving laterally averaged, 2‐D momentum and continuity equations. The FSC method is a predictor–corrector scheme, in which an intermediate free surface elevation is first calculated from the vertically integrated continuity equation after an intermediate, longitudinal velocity distribution is determined from the momentum equation. In the finite difference equation for the intermediate velocity, the vertical eddy viscosity term and the bottom‐ and sidewall friction terms are discretized implicitly, while the pressure gradient term, convection terms, and the horizontal eddy viscosity term are discretized explicitly. The intermediate free surface elevation is then adjusted by solving a FSC equation before the intermediate velocity field is corrected. The finite difference scheme is simple and can be easily implemented in existing laterally averaged 2‐D models. It is unconditionally stable with respect to gravitational waves, shear stresses on the bottom and side walls, and the vertical eddy viscosity term. It has been tested and validated with analytical solutions and field data measured in a narrow, riverine estuary in southwest Florida. Model simulations show that this numerical scheme is very efficient and normally can be run with a Courant number larger than 10. It can be used for rivers where the upstream bed elevation is higher than the downstream water surface elevation without any problem. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
一类格心型ALE有限体积格式方法   总被引:1,自引:1,他引:0  
现在国内外流行的ALE有限体积格式基本上都基于交错网榕进行格式的离散.该类格武在进行重映时,速度、密度和能量需要分别进行重映计算,效率较低,而且由于速度在网格角点.而密度、能量在网格中心,重映时会出现动能和内能不协调现泉.本文在巳有格心型Lagrange有限体积格式研究的基础上,结合Abgrall R.等关于榕心型格式下的网格角点速度的计算方法,利用最小二乘法进行高阶插值多项式重构,构造了一类新的格心型的高精度Lagrangian有限体积格式,并结合有效的高精度ENO守恒重映方法,获得了一类格心型的高精度ALE有限体积格式.数值试验的结果说明本文的格式是有效的,高精度的,收敛的,并且避免了物理量的不协调现象.  相似文献   

6.
准确高效地对损伤和断裂问题进行建模是计算力学中的关键研究课题之一。将近场动力学最小二乘在处理含裂纹等非连续问题上的优势和有限元计算效率高及便于施加边界条件的优势结合,提出了近场动力学最小二乘和有限元耦合方法。将裂纹及其可能扩展区域划分为近场动力学区域,边界及其他区域划分为有限元区域,并将其中的结点类型分为近场动力学结点和有限元结点。有限元结点仅与同单元中的其他结点产生作用,近场动力学结点则与其族内的所有结点产生作用。将以上的单元刚度矩阵和质量矩阵进行组装得到整体刚度矩阵和整体质量矩阵。本文的耦合方法数值实现简单有效,相对于键基和常规态基近场动力学,该耦合方法包含了应力和应变的概念,同时不受零能模式的影响。一维和二维静态和动态问题的研究,验证了本文的耦合方法的有效性和准确性。  相似文献   

7.
A collocated discrete least squares meshless method for the solution of the transient and steady‐state hyperbolic problems is presented in this paper. The method is based on minimizing the sum of the squared residuals of the governing differential equation at some points chosen in the problem domain as collocation points. The collocation points are generally different from nodal points, which are used to discretize the problem domain. A moving least squares method is employed to construct the shape functions at nodal points. The coefficient matrix is symmetric and positive definite even for non‐symmetric hyperbolic differential equations and can be solved efficiently with iterative methods. The proposed method is a truly meshless method and does not require numerical integration. Advantages of the collocation points are shown to be threefold: First, the collocation points are shown to be responsible for stabilizing the method in particular when problems with shocked solution are attempted. Second, the collocation points are also shown to improve the accuracy of the solution even for problems with smooth solutions. Third, the collocation points are shown to contribute to the efficiency of the method when solving steady‐state problems via faster convergence of the resulting algorithm. The ability of the method and in particular the effect of collocation points are tested against a series of one‐dimensional transient and steady‐state benchmark examples from the literature and the results are presented. A sensitivity analysis is also carried out to investigate the effect of the base polynomials on the accuracy and convergence characteristics of the method in solving steady‐state problems. The results show the ability of the proposed method to accurately solve difficult hyperbolic problems considered. The method is also shown to be particularly stable for problems with shocked solution due to the inherent stabilizing mechanism of the method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
THEREMAINDER-EFFECTANALYSISOFFINITEDIFFERENCESCHEMESANDTHEAPPLICATIONSLiuRu-xun(刘儒勋)ZhouZhao-hui(周朝晖)(Dept.ofMath.Universityo...  相似文献   

9.
The explicit compact difference scheme,proposed in Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD by Lin et al.,published in Applied Mathematics and Mechanics (English Edition),2007,28(7),943-953,has the same performance as the conventional finite difference schemes.It is just another expression of the conventional finite difference schemes. The proposed expression does not have the advantages of a compact difference scheme. Nonetheless,we can more easily obtain and implement compared with the conventional expression in which the coefficients can only be obtained by solving equations,especially for higher accurate schemes.  相似文献   

10.
11.
This paper reports a comparative study on the stability limits of nine finite difference schemes to discretize the one‐dimensional unsteady convection–diffusion equation. The tested schemes are: (i) fourth‐order compact; (ii) fifth‐order upwind; (iii) fourth‐order central differences; (iv) third‐order upwind; (v) second‐order central differences; and (vi) first‐order upwind. These schemes were used together with Runge–Kutta temporal discretizations up to order six. The remaining schemes are the (vii) Adams–Bashforth central differences, (viii) the Quickest and (ix) the Leapfrog central differences. In addition, the dispersive and dissipative characteristics of the schemes were compared with the exact solution for the pure advection equation, or simple first or second derivatives, and numerical experiments confirm the Fourier analysis. The results show that fourth‐order Runge–Kutta, together with central schemes, show good conditional stability limits and good dispersive and dissipative spectral resolution. Overall the fourth‐order compact is the recommended scheme. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
Based on the successive iteration in the Taylor series expansion method, a three-point explicit compact difference scheme with arbitrary order of accuracy is derived in this paper. Numerical characteristics of the scheme are studied by the Fourier analysisl Unlike the conventional compact difference schemes which need to solve the equation to obtain the unknown derivatives in each node, the proposed scheme is explicit and can achieve arbitrary order of accuracy in space. Application examples for the convectiondiffusion problem with a sharp front gradient and the typical lid-driven cavity flow are given. It is found that the proposed compact scheme is not only simple to implement and economical to use, but also is effective to simulate the convection-dominated problem and obtain high-order accurate solution in coarse grid systems.  相似文献   

13.
Based on the successive iteration in the Taylor series expansion method,a three-point explicit compact difference scheme with arbitrary order of accuracy is derived in this paper.Numerical characteristics of the scheme are studied by the Fourier analysis. Unlike the conventional compact difference schemes which need to solve the equation to obtain the unknown derivatives in each node,the proposed scheme is explicit and can achieve arbitrary order of accuracy in space.Application examples for the convection- diffusion problem with a sharp front gradient and the typical lid-driven cavity flow are given.It is found that the proposed compact scheme is not only simple to implement and economical to use,but also is effective to simulate the convection-dominated problem and obtain high-order accurate solution in coarse grid systems.  相似文献   

14.
This paper considers a method of lines stability analysis for finite difference discretizations of a recently published Boussinesq method for the study of highly non‐linear and extremely dispersive water waves. The analysis demonstrates the near‐equivalence of classical linear Fourier (von Neumann) techniques with matrix‐based methods for formulations in both one and two horizontal dimensions. The matrix‐based method is also extended to show the local de‐stabilizing effects of the non‐linear terms, as well as the stabilizing effects of numerical dissipation. A comparison of the relative stability of rotational and irrotational formulations in two horizontal dimensions provides evidence that the irrotational formulation has significantly better stability properties when the deep‐water non‐linearity is high, particularly on refined grids. Computation of matrix pseudospectra shows that the system is only moderately non‐normal, suggesting that the eigenvalues are likely suitable for analysis purposes. Numerical experiments demonstrate excellent agreement with the linear analysis, and good qualitative agreement with the local non‐linear analysis. The various methods of analysis combine to provide significant insight into the numerical behaviour of this rather complicated system of non‐linear PDEs. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
The explicit compact difference scheme, proposed in Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD by Lin et al., published in Applied Mathematics and Mechanics (English Edition), 2007, 28(7), 943-953, has the same performance as the conventional finite difference schemes. It is just another expression of the conventional finite difference schemes. The proposed expression does not have the advantages of a compact difference scheme. Nonetheless, we can more easily obtain and implement compared with the conventional expression in which the coefficients can only be obtained by solving equations, especially for higher accurate schemes.  相似文献   

16.
开口薄壁杆件结构稳定分析的精确单元和两步求解算法   总被引:1,自引:0,他引:1  
从控制微分方程的通解出发,构造受偏心压力作用开口薄壁杆件的精确形函数,建立用于开口薄壁杆件结构稳定性分析的精确有限元,得到了单元刚度矩阵和几何刚度矩阵的显式表达,提出了计算给定区间内各阶临界荷载以及相应失稳模态的两步计算方法。计算结果表明,与常规单元相比,采用精确单元无需进行网格细分就可以获得精确的数值结果,结合本文的两步求解算法,可以准确获得给定区间内全部临界荷载和失稳模态。  相似文献   

17.
We set up a numerical strategy for the simulation of the Euler equations, in the framework of finite volume staggered discretizations where numerical densities, energies, and velocities are stored on different locations. The main difficulty relies on the treatment of the total energy, which mixes quantities stored on different grids. The proposed method is strongly inspired, on the one hand, from the kinetic framework for the definition of the numerical fluxes, and, on the other hand, from the discrete duality finite volume (DDFV) framework, which has been designed for the simulation of elliptic equations on complex meshes. The time discretization is explicit and we exhibit stability conditions that guaranty the positivity of the discrete densities and internal energies. Moreover, while the scheme works on the internal energy equation, we can define a discrete total energy which satisfies a local conservation equation. We provide a set of numerical simulations to illustrate the behavior of the scheme.  相似文献   

18.
The necessary and sufficient condition of the stability of linear nonautonomous system under the frequently-acting perturbation has been given and proved on the basis of[1]and[2],and the theorem of the equivalence on the uniform and asymptotical stability in the sense of Liapunov and the stability under the frequently-acting perturbation of linear nonautonomous system has been given in this paper.Besides,the analysis of the dynamic stability of robot has been presented by applying the theorem in this paper,which is closer to reality.  相似文献   

19.
提出一种Fourier-Legendre谱元方法用于求解极坐标系下的Navier-Stokes方程,其中极点所在单元的径向采用Gauss-Radau积分点,避免了r=0处的1/r坐标奇异性。时间离散采用时间分裂法,引入数值同位素模型跟踪同位素的输运过程验证数值模拟的精度,分别利用谱元法和有限差分法的迎风差分格式求解匀速和加速坩埚旋转流动中的同位素方程。计算结果表明,有限差分法中的一阶迎风差分格式存在严重的数值假扩散,二阶迎风差分格式的数值结果较精确,增加节点可以有效地缓解数值扩散。然而,谱元法具有以较少节点得到高精度解的优势。  相似文献   

20.
针对基本复合形法全局搜索能力不强的缺陷,改进了基本复合形法的寻优方法。在关于各个顶点的寻优直线上分别找出比各个顶点优异的点并替换掉各顶点构成多个新复形,并以各个复合形中心点到各个顶点的海明距离之和为中心距指标,找出最大中心距的复形为下一次迭代之新复形。依次迭代,直到没有新的复形产生。通过对两个复杂边坡最小安全系数的搜索,发现本文新复合形法的全局搜索能力有较大提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号