首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we consider the bifurcation of limit cycles for system $\dot{x}=-y(x^2+a^2)^m,~\dot{y}=x(x^2+a^2)^m$ under perturbations of polynomials with degree n, where $a\neq0$, $m\in \mathbb{N}$. By using the averaging method of first order, we bound the number of limit cycles that can bifurcate from periodic orbits of the center of the unperturbed system. Particularly, if $m=2, n=5$, the sharp bound is 5.  相似文献   

2.
在L形瓦理论的基础上,结合中国剩余定理和数论中的素数理论,通过讨论A+z-2j≠0的一般情况,证明可以构造任意k_0紧优双环网络无限族:{N(t)=3t~2+(2i-1)t+B;B=k_0~2-nk_0+m,t=f~2-if-nk_0+m,f=(2i-i~2+4B)p_1~2p_2~2…p_(k_0~2)~2e+c,其中i=1,3,e≥0,m,n均为整数}.结点数N(t)为e的4次多项式,也可以为e的2次多项式且系数含有参数.  相似文献   

3.
设$\varphi$为群${\rm Aut}(N)$的同态,记$H_\varphi\times N$为群$N$借助于群$H$的半直积.设$G$为有限不可解群,本文证明: 若$G$中最高阶元素个数为40, 则$G$同构于下列群之一:(1)~$Z_{4\varphi}\times A_5$,\,${\rm ker}\varphi=Z_2$; (2)~$D_{8\varphi}\times A_5,\,{\rm ker}\varphi=Z_2\times Z_2$; (3)~$G/N=S_5$, $N=Z(G)=Z_2$; (4)~$G/N=S_5$, $N=Z_2\times Z_2,\,N\cap Z(G)=Z_2$.  相似文献   

4.
一类具功能反应的食饵——捕食者系统定性分析   总被引:5,自引:0,他引:5  
研究一类具功能反应的食饵-捕食者系统:x=xg(x)-y(?)(x),y=y(-d+e(?)(x).在g(x)=α-bxm,(?)(x)=cxθ及m+θ=1,m=1/n,n>2为正整数情形下,分析了该系统的平衡点性态,并得到了系统在正平衡点外围的极限环的不存在性、存在性与唯一性的相关条件.  相似文献   

5.
The three-dimensional spherical polytropic Lane-Emden problem is $y_{rr}+(2/r) y_{r} + y^{m}=0, y(0)=1, y_{r}(0)=0$ where $m \in [0, 5]$ is a constant parameter. The domain is $r \in [0, \xi]$ where $\xi$ is the first root of $y(r)$. We recast this as a nonlinear eigenproblem, with three boundary conditions and $\xi$ as the eigenvalue allowing imposition of the extra boundary condition, by making the change of coordinate $x \equiv r/\xi$: $y_{xx}+(2/x) y_{x}+ \xi^{2} y^{m}=0, y(0)=1, y_{x}(0)=0,$ $y(1)=0$. We find that a Newton-Kantorovich iteration always converges from an $m$-independent starting point $y^{(0)}(x)=\cos([\pi/2] x), \xi^{(0)}=3$. We apply a Chebyshev pseudospectral method to discretize $x$. The Lane-Emden equation has branch point singularities at the endpoint $x=1$ whenever $m$ is not an integer; we show that the Chebyshev coefficients are $a_{n} \sim constant/n^{2m+5}$ as $n \rightarrow \infty$. However, a Chebyshev truncation of $N=100$ always gives at least ten decimal places of accuracy — much more accuracy when $m$ is an integer. The numerical algorithm is so simple that the complete code (in Maple) is given as a one page table.  相似文献   

6.
A graph G is called quasi-claw-free if it satisfies the property:d(x,y)=2 there exists a vertex u∈N(x)∩N(y)such that N[u]■N[x]∪N[y].In this paper,we show that every 2-connected quasi-claw-free graph of order n with G■F contains a cycle of length at least min{3δ+2,n},where F is a family of graphs.  相似文献   

7.
It is proved that each sufficiently large integer N=5(mod24) can be written as N=p1^2+p2^2+p3^2+p4^2+p5^2 with|pj=√N/5|±、≤U=N^1/2-1/35+e,where pj ae primes.This result,which is obtained by an iterative method and a hybrid estimate for Dirichlet polynomial, improves the previous results in this direction.  相似文献   

8.
In this paper, we consider Poincar{\''e} bifurcation from an elliptic Hamiltonian of degree four with two-saddle cycle. Based on the Chebyshev criterion, not only one case in the Li{\''e}nard equations of type $(3, 2)$ is discussed again in a different way from the previous ones, but also its two extended cases are investigated, where the perturbations are given respectively by adding $\varepsilon y(d_0 + d_2 v^{2n})\frac{\partial }{{\partial y}}$ with $ n\in \mathbb{N^+}$ and $\varepsilon y(d_0 + d_4 {v^4}+ d_2 v^{2n+4})\frac{\partial }{{\partial y}}$ with $n=-1$ or $ n\in \mathbb{N^+}$, for small $\varepsilon > 0$. For the above cases, we obtain all the sharp upper bound of the number of zeros for Abelian integrals, from which the existence of limit cycles at most via the first-order Melnikov functions is determined. Finally, one example of double limit cycles for the latter case is given.  相似文献   

9.
We consider the uniformly bounded orthonormal system of functions $$ u_n^{(\l)}(x)= \varphi_n^{(\lambda)}(\cos x)(\sin x)^\lambda, \qquad x\in [0,\pi], $$ where $\{\varphi_n^{(\lambda)}\}_{n=0}^\infty \,\, (\lambda > 0)$ is the normalized system of ultraspherical polynomials. R. Askey and S. Wainger proved that the $L^p$-norm $(1 < p < \infty)$ of any linear combination of the first $N+1$ functions $u_n^{(\lambda)}(x)$ is equivalent to the $L^p$-norm of the even trigonometric polynomial of degree $N$ with the same coefficients. This theorem fails if $p=1 $ or $p=\infty.$ Studying these limiting cases, we prove (for $0 < \lambda < 1$) similar transplantation theorems in $\mbox{Re } H^1$ and $\mbox{BMO}.$  相似文献   

10.
In this article, we study the maximum number of limit cycles for two classes of planar polynomial differential systems with uniform isochronous centers. Using the first-order averaging method, we analyze how many limit cycles can bifurcate from the period solutions surrounding the centers of the considered systems when they are perturbed inside the class of homogeneous polynomial differential systems of the same degree. We show that the maximum number of limit cycles, $m$ and $m+1$, that can bifurcate from the period solutions surrounding the centers for the two classes of differential systems of degree $2m$ and degree $2m+1$, respectively. Both of the bounds can be reached for all $m$.  相似文献   

11.
In this paper, the authors consider limit cycle bifurcations for a kind of nonsmooth polynomial differential systems by perturbing a piecewise linear Hamiltonian system with a center at the origin and a heteroclinic loop around the origin. When the degree of perturbing polynomial terms is n(n ≥ 1), it is obtained that n limit cycles can appear near the origin and the heteroclinic loop respectively by using the first Melnikov function of piecewise near-Hamiltonian systems, and that there are at most n + [(n+1)/2] limit cycles bifurcating from the periodic annulus between the center and the heteroclinic loop up to the first order in ε. Especially, for n = 1, 2, 3 and 4, a precise result on the maximal number of zeros of the first Melnikov function is derived.  相似文献   

12.
For the quadratic system: x=-y δx lx2 ny2, y=x(1 ax-y) under conditions -10 the author draws in the (a, ()) parameter plane the global bifurcationdiagram of trajectories around O(0,0). Notice that when na2 l < 0 the system has one saddleN(0,1/n) and three anti-saddles.  相似文献   

13.
Let be a rational prime and a positive rational integer coprime with . Denote by the number of solutions of the equation in rational integers and . In a paper of Le, he claimed that without giving a proof. Furthermore, the statement has been used by Le, Bugeaud and Shorey in their papers to derive results on certain Diophantine equations. In this paper we point out that the statement is incorrect by proving that .

  相似文献   


14.
1.IntroductionandStatementofResultsIn1937,Vinogradovi7]provedthatJ(N),thenumberofrepresefltationsofanilltegerNassumsofthreeprimes,satisfiesthefollowingasymptoticformulawherea(N)isthesingularseries,andu(N)>>1foroddN.Itthereforefollowsthateverysufficientlylargeoddintegeristhesumofthreeprimes.ThissettledtheternaryGoldbachproblem,andtheresultisreferredtoastheGoldbach-Vinogradovtheorein.ManyauthorshaveconsideredthecorrespondingproblemswithrestrictedconditionsposedonthethreeprimesintheGoldbach…  相似文献   

15.
Using the averaging theory of first and second order we study the maximum number of limit cycles of generalized Linard differential systems{x = y + εh_l~1(x) + ε~2h_l~2(x),y=-x- ε(f_n~1(x)y~(2p+1) + g_m~1(x)) + ∈~2(f_n~2(x)y~(2p+1) + g_m~2(x)),which bifurcate from the periodic orbits of the linear center x = y,y=-x,where ε is a small parameter.The polynomials h_l~1 and h_l~2 have degree l;f_n~1and f_n~2 have degree n;and g_m~1,g_m~2 have degree m.p ∈ N and[·]denotes the integer part function.  相似文献   

16.
图G的圈点连通度,记为κ_c(G),是所有圈点割中最小的数目,其中每个圈点割S满足G-S不连通且至少它的两个分支含圈.这篇文章中给出了两个连通图的笛卡尔乘积的圈点连通度:(1)如果G_1≌K_m且G_2≌K_n,则κ_c(G_1×G_2)=min{3m+n-6,m+3n-6},其中m+n≥8,m≥n+2,或n≥m+2,且κ_c(G_1×G_2)=2m+2n-8,其中m+n≥8,m=n,或n=m+1,或m=n+11;(2)如果G_1≌K_m(m≥3)且G_2■K_n,则min{3m+κ(G_2)-4,m+3κ(G_2)-3,2m+2κ(G_2)-4}≤κ_c(G_1×G_2)≤mκ(G2);(3)如果G_1■K_m,K_(1,m-1)且G_2■K_n,K_(1,n-1),其中m≥4,n≥4,则min{3κ(G_1)+κ(G_2)-1,κ(G_1)+3κ(G_2)-1,2_κ(G_1)+2_κ(G_2)-2}≤κ_c(G_1×G_2)≤min{mκ(G_2),nκ(G_1),2m+2n-8}.  相似文献   

17.
This paper deals with the number of limit cycles and bifurcation problem of quadratic differential systems. Under conditions $a<0,b+2l>0,l+1<0$, the author draws three bifurcation diagrams of the system (1.18) below in the (\delta,m) plane, which show that the maximum number of limit cycles around a focus is two in this case.  相似文献   

18.
In this paper, center conditions and bifurcations of limit cycles for a class of cubic polynomial system in which the origin is a nilpotent singular point are studied. A recursive formula is derived to compute quasi-Lyapunov constant. Using the computer algebra system Mathematica, the first seven quasi-Lyapunov constants of the system are deduced. At the same time, the conditions for the origin to be a center and 7-order fine focus are derived respectively. A cubic polynomial system that bifurcates seven limit cycles enclosing the origin (node) is constructed.  相似文献   

19.
The notion of Hilbert number from polynomial differential systems in the plane of degree $n$ can be extended to the differential equations of the form \[\dfrac{dr}{d\theta}=\dfrac{a(\theta)}{\displaystyle \sum_{j=0}^{n}a_{j}(\theta)r^{j}} \eqno(*)\] defined in the region of the cylinder $(\tt,r)\in \Ss^1\times \R$ where the denominator of $(*)$ does not vanish. Here $a, a_0, a_1, \ldots, a_n$ are analytic $2\pi$--periodic functions, and the Hilbert number $\HHH(n)$ is the supremum of the number of limit cycles that any differential equation $(*)$ on the cylinder of degree $n$ in the variable $r$ can have. We prove that $\HHH(n)= \infty$ for all $n\ge 1$.  相似文献   

20.
In this paper, we consider the Liouville-type theorem for stable solutions of the following Kirchhoff equation ■,where M(t) = a + bt~θ, a 0, b, θ≥ 0, θ = 0 if and only if b = 0. N ≥ 2, q 0 and the nonnegative function g(x) ∈ L_(loc)~1(R~N). Under suitable conditions on g(x), θ and q, we investigate the nonexistence of positive stable solution for this problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号