首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the title compounds, 3-(dihydroxyboryl)anilinium bisulfate monohydrate, C6H9BNO2+·HSO4·H2O ( I ), and 3-(dihydroxyboryl)anilinium methyl sulfate, C6H9BNO2+·CH3SO4 ( II ), the almost planar boronic acid molecules are linked by pairs of O—H…O hydrogen bonds, forming centrosymmetric motifs that can be described by the graph-set R22(8) motif. In both crystals, the B(OH)2 group acquires a synanti conformation (with respect to the H atoms). The presence of the hydrogen-bonding functional groups B(OH)2, NH3+, HSO4, CH3SO4 and H2O generates three-dimensional hydrogen-bonded networks, in which the bisulfate (HSO4) and methyl sulfate (CH3SO4) counter-ions act as the central building blocks within the crystal structures. Furthermore, in both structures, the packing is stabilized by weak boron–π interactions, as shown by noncovalent interactions (NCI) index calculations.  相似文献   

2.
Synthesis and Crystal Structure of Metal(I) Hydrogen Sulfates – Ag(H3O)(HSO4)2, Ag2(HSO4)2(H2SO4), AgHSO4, and Hg2(HSO4)2 Hydrogen sulfates Ag(H3O)(HSO4)2, Ag2(HSO4)2 · (H2SO4), and AgHSO4 have been synthesized from Ag2SO4 and sulfuric acid. Hg2(HSO4)2 was obtained from metallic mercury and 96% sulfuric acid as starting materials. The compounds were characterized by X‐ray single crystal structure determination. Ag(H3O)(HSO4)2 belongs to the structure type of Na(H3O)(HSO4). The silver atom is coordinated by 6 + 2 oxygen atoms. In the structure, there are dimers and chains of hydrogen bonded HSO4 tetrahedra. Dimers and chains are connected by the H3O+ ion to form a three dimensional hydrogen network. Ag2(HSO4)2(H2SO4) crystallizes isotypic to Na2(HSO4)2(H2SO4). The coordination number of silver is 6 + 1. The structure of Ag2(HSO4)2(H2SO4) is characterized by hydrogen bonded trimers of HSO4 tetrahedra, which are further connected to chains. For the recently published structure of AgHSO4 the hydrogen bonding system was discussed. There are tetrameres and chains, connected by bifurcated hydrogen bonds. The structure of Hg2(HSO4)2 contains Hg22+ cations with Hg–Hg distance of 2.509 Å. Every mercury atom is coordinated by one oxygen atom at shorter distance (2.18 Å) and three ones at longer distances (2.57 to 3.08 Å). The HSO4 tetrahedra form zigzag chains by hydrogen bonds.  相似文献   

3.
Depending on the reaction partner, the organic ditopic molecule isonicotinic acid (Hina) can act either as a Brønsted acid or base. With sulfuric acid, the pyridine ring is protonated to become a pyridinium cation. Crystallization from ethanol affords the title compound tris(4‐carboxypyridinium) hydrogensulfate sulfate monohydrate, 3C6H6NO2+·HSO4·SO42−·H2O or [(H2ina)3(HSO4)(SO4)(H2O)]. This solid contains 11 classical hydrogen bonds of very different flavour and nonclassical C—H…O contacts. All N—H and O—H donors find at least one acceptor within a suitable distance range, with one of the three pyridinium H atoms engaged in bifurcated N—H…O hydrogen bonds. The shortest hydrogen‐bonding O…O distance is subtended by hydrogensulfate and sulfate anions, viz. 2.4752 (19) Å, and represents one of the shortest hydrogen bonds ever reported between these residues.  相似文献   

4.
A novel structure type of an acidic rare‐earth sulfate, hexa­potassium cerium dihydrogensulfate tetra­sulfate monohydrate, is reported. The crystal is twinned, mimicking tetra­gonal symmetry. The CeIV atom is nine‐coordinate, connecting to one corner‐sharing and four edge‐sharing sulfate groups. One of the potassium ions is disordered over two general positions. The compound is unique as it contains rare‐earth monomers, [Ce(HSO4)(SO4)4]5−. The structure is composed of these monomers, water mol­ecules, discrete hydrogensulfate ions and potassium ions held together by ionic inter­actions. There are two types of alternating layers in the structure, with compositions [K4Ce(HSO4)(SO4)4] and [K2(HSO4)(H2O)]+.  相似文献   

5.
Ternary clusters (NH3)·(H2SO4)·(H2O)n have been widely studied. However, the structures and binding energies of relatively larger cluster (n > 6) remain unclear, which hinders the study of other interesting properties. Ternary clusters of (NH3)·(H2SO4)·(H2O)n, n = 0-14, were investigated using MD simulations and quantum chemical calculations. For n = 1, a proton was transferred from H2SO4 to NH3. For n = 10, both protons of H2SO4 were transferred to NH3 and H2O, respectively. The NH4+ and HSO4 formed a contact ion-pair [NH4+-HSO4] for n = 1-6 and a solvent separated ion-pair [NH4+-H2O-HSO4] for n = 7-9. Therefore, we observed two obvious transitions from neutral to single protonation (from H2SO4 to NH3) to double protonation (from H2SO4 to NH3 and H2O) with increasing n. In general, the structures with single protonation and solvated ion-pair were higher in entropy than those with double protonation and contact ion-pair of single protonation and were thus preferred at higher temperature. As a result, the inversion between single and double protonated clusters was postponed until n = 12 according to the average binding Gibbs free energy at the normal condition. These results can serve as a good start point for studies of the other properties of these clusters and as a model for the solvation of the [H2SO4-NH3] complex in bulk water.  相似文献   

6.
Synthesis and Structure of New Sodium Hydrogen Sulfates Na(H3O)(HSO4)2, Na2(HSO4)2(H2SO4), and Na(HSO4)(H2SO4)2 Three acidic sodium sulfates have been synthesized from the system sodium sulfate/sulfuric acid and have been crystallographically characterized. Na(H3O)(HSO4)2 ( A ) crystallizes in the space group P21/c with the unit cell parameters a = 6.974(2), b = 13.086(2), c = 8.080(3) Å, α = 105.90(4)°, V = 709.1 Å3, Z = 4. Na2(HSO4)2(H2SO4) ( B ) is orthorhombic (space group Pna21) with the unit cell parameters a = 9.970(2), b = 6.951(1), c = 13.949(3) Å, V = 966.7 Å3 and Z = 4. Na(HSO4)(H2SO4)2 ( C ) crystallizes in the triclinic space group P1 with the unit cell parameters a = 5.084(1), b = 8.746(1), c = 11.765(3) Å, α = 68.86(2)°, β = 88.44(2)°, γ = 88.97(2)°, V = 487.8 Å3 and Z = 2. All three compounds contain SO4 tetrahedra as HSO4? anions and additionally in B and C in form of H2SO4 molecules. The ratio H:SO4 determines the connectivity degree in the hydrogen bond system. In A , there are zigzag chains and dimers additionally connected via oxonium ions. Complex chains consisting of cyclic trimers (two HSO4? and one H2SO4) are present in B . In structure C , several parallel chains are connected to columns due to the greater content of H2SO4. Sodium cations show a distorted octahedral coordination by oxygen in all three structures, the NaO6 octahedra being “isolated” (connected via SO4 tetrahedra only) in A . Pairs of octahedra with common edge form Na2O10 dimeric units in C . Such double octahedra are connected via common corners forming zigzag chains in B .  相似文献   

7.
The effect of the acidity of the medium on the hydroxylation and nitration of alkanes (RH) in 90–98% H2SO4 at 25°C is described quantitatively by a model taking account of the thermodynamic activity of the RH, H2O, and HSO4- particles. It was concluded that in the transition states the reagents H3O2+HSO4- and NO2+ HSO4- are present as HO+ and NO2+ ions without the bases H–O and HSO4-, the alkanes are present without hydrophobic shells, and the initial reaction products are ROH2+ and RNO2H+.  相似文献   

8.
Preparation and Characterization of Calcium Hydrogen Sulfate CaSO4 · H2SO4 was identified as calcium hydrogen sulfate whereas CaSO4 · 3 H2SO4 is an adduct of CaSO4 with H2SO4. Depending on the excessive amount of H2SO4 both compounds exist side by side up to a temperature of 343 K, whereas above this temperature only Ca(HSO4)2 is stable. The DTA curve of Ca(HSO4)2 shows two maxima at 488 K and 523 K, according to the separation of H2O under formation of pyrosulfate and decomposition of this compound under elimination of SO3. In comparison with other hydrogen sulfates Ca(HSO4)2 shows a considerable increased O? H distances. The d-values of Ca(HSO4)2 are calculated and represented.  相似文献   

9.
Hydrogen Sulfates with Disordered Hydrogen Atoms – Synthesis and Structure of Li[H(HSO4)2](H2SO4)2 and Refinement of the Structure of α-NaHSO4 The structure of Li[H(HSO4)2](H2SO4)2 has been determined for the first time whereas the structure of α-NaHSO4 has been refined, so that direct determination of the hydrogen positions was possible. Both compounds crystallize triclinic in the space group P1 with the lattice constants a = 6.708(2), b = 6.995(1), c = 7.114(1) Å, α = 75.53(1), β = 84.09(2) and γ = 87.57(2)° (Z = 4) for α-NaHSO4 and a = 4.915(1), b = 7.313(1), c = 8.346(2) Å, α = 82.42(3), β = 86.10(3) and γ = 80.93(3)° (Z = 1) for Li[H(HSO4)2](H2SO4)2. In both compounds there are disordered hydrogen positions. In the structure of α-NaHSO4 there are two crystallographically different HSO4? tetrahedra and two different coordinated Na atoms. The system of hydrogen bonds can be described by chains in [0–11] direction. The disordering of the H atoms reduces the differences between the S? O and S? OH distances (1.45 and 1.50 Å) while in the ordered HSO4 unit “regular” bond lengths are observed (1.45 und 1,57 Å). In the structure of Li[H(HSO4)2](H2SO4)2 there are two crystallographically different SO4-tetrahedra. The first one belongs to the [H(HSO4)2]? unit while the second one represents H2SO4 molecules. The H atom which is located nearby the symmetry centre and connects two HSO4 units by a short O…?O distance of 2.44 Å. Li is located on a symmetry centre and is slightly distorted octahedrally coordinated by oxygen atoms of six different SO4 tetrahedra. The system of hydrogen bonds can be regarded as consisting of double layers parallel to the xy-plane.  相似文献   

10.
X-ray fluorescence (XRF) spectra of poly(butyl cyanoacrylate) initiated, in tetrahydrofuran, by triphenylphospine and terminated by SO3, show the persistent presence of phosphorus and sulfur in the polymer, in near-equivalent proportions, with the sulfur content partially removable by anion-exchange. It is concluded that all chains have initial phosphonium groups, and, in abesence of any hydrolysis-formed H2SO4, are macrozwitterions with terminal  SO3. Acid-terminated chains should have proton-capped ends and initial phosphonium+ · HSO4 ion-pairs.  相似文献   

11.
The method of deposition from solutions was used to synthesize [RhL 4Cl2]HSO4 · nH2SO4 · mH2O complex salts (L = Py, γ-picoline), n ≈ 0.5−0.6, m ≈ 5−6. According to the data of X-ray phase analysis, the crystal structure of these salts is formed by layers of cations separated by layers consisting of anions molecules of sulfuric acid and water connected through a system of hydrogen bonds. Calorimetric methods were used to study phase transitions and the range of thermal stability of salts. The method of 1H NMR spectroscopy discovered that protons within the {HSO4 · nH2SO4 · mH2O} subsystem featured enhanced conductivity. Conductivity studies showed that trans-[RhL 4Cl2]HSO4 · nH2SO4 · mH2O samples had high proton conductivity.  相似文献   

12.
《中国化学会会志》2017,64(1):43-54
White microcrystalline diamagnetic oxoperoxotungstate(VI) complexes K[WO(O2)2F]·H2O, K2[WO(O2)2(CO3)]·H2O, [WO(O2)(SO4)(H2O)2] have been synthesized from reaction of Na2WO4·2H2O with aqueous HF, solid KHCO3, aqueous H2SO4 (W:F 1:3; W: CO3 2 1:1; and W: SO4 2 1:3), and an excess of 30% H2O2 at pH 7.5–8. Precipitation was completed by the addition of precooled acetone. The occurrence of terminal WO and triangular bidentate O2 2 (C 2 v ) in the synthesized compounds was ascertained from IR spectra. The IR spectra also suggested that the F and SO4 2 ions in K[WO(O2)2F]·H2O and [WO(O2)(SO4)(H2O)2] were bonded to the WO +4 center in monodentate manner, while CO3 2 ion in K2[WO(O2)2(CO3)]·H2O binds the metal center in bidentate chelating fashion. The complex [WO(O2)(SO4)(H2O)2] is stable upto 110°C. The water molecule in [WO(O2)(SO4)(H2O)2] is coordinated to the WO +4 center, whereas it occurs as water of crystallization in the corresponding peroxo(fluoro) and peroxo(carbonato) compounds. Mass spectra of the compounds are in good agreement with the molecular formulae of the complexes. K2[WO(O2)2(CO3)]·H2O acts as an oxidant for bromide in the aqueous‐phase bromination of organic substrates to the corresponding bromo‐organics, and the complex also oxidizes Hantzsch‐1,4‐dihydropyridine to the corresponding pyridine derivative in excellent yield at room temperature. Density functional theory computation was carried out to compute the frequencies of relevant vibrational modes and electronic properties, and the results are in agreement with the experimentally obtained data.  相似文献   

13.
Addition of water to stoichiometric 100% sulfuric acid increases the density untila maximum results near 87 mole% H2SO4. The density and conductivity maximaand viscosity minimum, the latter two near 75 mole%, are direct macroscopicresponses to microscopic quantum mechanical properties of H3O+ and of nearlysymmetric H-bond double-well potentials, as follows: (1) lack of H bonding tothe O atom of H3O+; (2) short, 2.4–2.6 A, O—O distances of nearly symmetricH bonds; and, (3) increased mobility of protons in such short H bonds, give riseto the density maximum via (1) and (2); (1) produces the viscosity minimum;and the conductivity maximum results from (2) and (3). A pronounced minimumnear 1030 cm–1 in the symmetric SO3 stretching Raman frequency of HSO4 ,observed near 45 mole% also results from double-well effects involving the shortH bonds of direct hydronium ion—bisulfate ion pair interactions. Estimates of theconcentrations of the (H3O+)(HSO4 ) and (H2SO4)(HSO4 ) pair interactions weredetermined from Raman intensity data and are given for compositions between42–100 mole%  相似文献   

14.
Synthesis and Characterization of Ca(HSO4)2 · 2 H2SO4 or H2[Ca(HSO4)4], respectively ?Ca(HSO4)2 · 2 H2SO4”? crystallizes from CaSO4 saturated hot H2SO4c below 310 K. With SOCl2 containing ether it is possible, to remove two moles H2SO4 and to prepare Ca(HSO4)2. ?Ca(HSO4)2 · 2 H2SO4”? shows two endothermal effects at Tp1 = 336 K and Tp2 = 477 K during the thermal analysis. Whereas Tp2 corresponds to the segregation of H2SO4 from Ca(HSO4)2, Tp1 is attributed to the loss of two moles H2SO4. These results are supported by x-ray heating measurements on single crystals. From oscillation and Weissenberg photographs with CuKα the unit cell was determined. In agreement with these parameters, the compound is to formulate as the complex acid H2[Ca(HSO4)4].  相似文献   

15.
《Tetrahedron letters》1987,28(15):1627-1628
Equilibria in reactions of methanol and ethanol with sulfuric acid or in hydrolyses of alkyl sulfates were followed using 13C NMR, anion-exchange HPLC, and titrations. Variations of equilibrium constant K = [ester][H2O]/[ROH][HSO4-] with acidity indicate participation of reactions ROH2+ + HSO4- ⇌ ROH+SO3- + H2O, accompanied by acid base equilibria involving the alcohol and the ester. For mixtures containing initially 20% (w/w) alcohol, pKMeOH2 + = −4.2, pKEtOH2+ = −3.7, pKMeOH+SO3- = −3.3 and pKEtOH+SO3- = −2.7.  相似文献   

16.
Synthesis and Structure of Hydrogen Sulfates of the Type M(HSO4)(H2SO4) (M = Rb, Cs and NH4) From the binary systems M2SO4/H2SO4 (M = Rb, Cs, NH4), three new hydrogen sulfates of the type M(HSO4)(H2SO4) could be synthesized and structural characterized. The rubidium and caesium compounds are isotypic whereas NH4(HSO4)(H2SO4) is topologically very similar to both. All three compounds crystallize with nearly identical cell parameters [Rb: a = 7.382(1), b = 12.440(2), c = 7.861(2), β = 93.03(3); Cs: a = 7.604(1), b = 12.689(2), c = 8.092(2), β = 92.44(3); NH4: a = 7.521(3), b = 12.541(5), c = 7.749(3), β = 92.74(3)], in the monoclinic space group P21/c, There exist two kinds of SO4-tetrahedra: HSO4? anions (S1) and H2SO4-molecules (S2). The HSO4? anions form hydrogen bridged zigzag chains. In the case of the Rb and Cs compounds, the H2SO4 molecules connect these chains forming double layers. The metal atoms are coordinated by 9 O-atoms with M? O-distances of 2.97 – 3.39 Å (Rb) and 3.13 – 3.51 Å (Cs). In the ammonium compound additional hydrogen bonds are formed originating from the NH4+ cation. This finally leads to the formation of S2? NH4+ chains (parallel to the S1 chains) as well as to a three-dimensional connection of both kinds of chains.  相似文献   

17.
The interaction of the ferrocene-functionalized open-chain polyazaalkane 1,15-diferrocenyl-2,5,8,11,14-pentaazapentadecane (L1) with the sulfate, phosphate, and ATP anions has been studied by potentiometric methods in THF/H2O 70 : 30 (v/v) (containing 0.1M (Bu4N)ClO4 at 25°). Additionally, the electrochemical response of L1 in the presence of H+, HSO-4, H2PO-4, Br, and Cl in a non-aqueous solvent such as MeCN has been studied. A remarkable cathodic shift of the ferrocene oxidation potential was induced for phosphate (198 mV) and sulfate (145 mV) showing an EC mechanistic response. Competitive electrochemical studies showed that L1 is able to electrochemically and selectively recognize HSO-4 vs. H2PO-4 in a mixture of both anions in MeCN.  相似文献   

18.
The extraction of Fe, Zn and In by La2HCl from H2SO4 solutions has been studied. The formation of the aqueous complexes H2Fe(SO4)2HSO4, HZn(SO4)HSO4 and HInSO4(HSO4)2 is discussed. The formation of mixed ligand species H2Fe(SO4)2Cl, HZnSO4Cl and HInSO4Cl2 from the interaction of Cl+ in aqueous solution or in LA2HCl before extraction is explained. The reactions in the system to produce the extractable species are discussed. The possible separations are given.  相似文献   

19.
《印度化学会志》2023,100(7):101029
PSTA BATAN has synthesized zirconium sulfate (ZS) through two methods. Synthesis pathway (I) from Na2ZrO3 (CDZ) and (II) through zirconium oxychloride (ZOC). This research aimed to compare both pathways by utilizing FTIR. Path (I) was done using concentrations of H2SO4 65%, contact time of 30, 60, 90, and 150 min, and temperatures of 125, 150, 175, and 225 °C. While path II has been carried out in previous studies [1]. The FTIR image comparison was finished by tracing sulfate derivative functional groups from a wavenumber of 4000–400 cm−1. The O–H stretching at 3441.01 cm−1 as the Zr(OH)Zr group and OH vibration in 3425.68 cm−1 were found at each pathway. However, at pathway (II), we observed another vibration at 3132.40 cm−1 as the NH3 compound group. Furthermore, the track records of S–O and SO stretching on both pathways were checked at 1635.64, 1095.57, and 956.69 cm−1, respectively, as H3O+, SO42−, and SO32− species. The real difference in pathway (I) was revealed by the presence of H2SO4 residue at 802.39 cm−1. At the same time, the Zr–O–Zr and O–Zr–O stretching could be detected in both pathways at the wavenumber of 594.09 and 470.63 cm−1 consecutively. The form of synthesis pathway (I) product was predicted as Zr(SO4)2, while the product of path (II) forecasted as Zr(NH3)(SO4)2 compound.  相似文献   

20.
Azametallacyclopropane-containing base stabilized borane complexes of group 5 transition metals have been synthesized and their structural aspects have been described. Treatment of Cp* based Ta and Nb chlorides, Cp*TaCl4 and Cp*NbCl4 with [LiBH4 ⋅ THF] followed by addition of ligands, such as 2-mercaptobenzothiazole, MBT, (C7H5NS2) and 2-mercaptobenzoxazole, MBO (C7H5NSO) led to the formation of complexes [Cp*M-[BHS(CH2ENC6H4)(C7H4NSE)] ( 1 : M=Ta, E=S; 2 ; M=Nb, E=S; 3 : M=Ta, E=O; 4 ; M=Nb, E=O, Cp*=pentamethyl-η5-cyclopentadienyl). By means of UV-vis absorption spectra, the electronic properties of these complexes associated with central metal atoms and heteroatoms (S or O) have been evaluated. In contrast, treatment of Cp*TaCl4 with 2-mercaptopyridine, MP, (C5H5NS) under the same reaction conditions yielded the agostic σ-borane Ta complex, [Cp*Ta(H3BNC5H4) (C5H4NS)(η2-S2)], 5 . Unlike 1 – 4 , where the metals interact with boron through bridging sulphur, 5 shows a notable σ-B−H bond interaction with Ta. All spectroscopic data of 1 – 5 along with the X-ray diffraction studies suggest complexes 2 , 4 , and 5 are base (amine) stabilized borane species. Computational studies based on Density Functional Theory (DFT) also supported this conclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号