首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mathematically well-defined measure of localization is presented based on Mulliken's orbital populations. It is shown that this quantity equals 1 for core- and lone-pair orbitals, 2 for two-atomic bonds, 6 for benzene rings, etc., and it is applicable for delocalized canonical HF orbitals as well. The definition of this quantity is general in the sense that ab initio MOS with overlapping AO expansion, and semiempirical wave functions using the ZDO approximation as well, can be treated. The localization quantity is essentially “intrinsic,” i.e., no subdivision of the molecule is required. For N-electron wave functions, mean delocalization can be defined. This measure is not invariant to unitary transformations of the one-electron orbitals, characterizing in this way the localized or extended representation of the N-electron wave function. It can be proven, however, that for unitary transformed wave functions a maximum delocalization exists which depends only on the physical (N-electron) properties of the molecule. It is shown that inhomogeneous charge distribution can cause strong electron localization in molecular systems. The delocalization of the canonical Hartree–Fock orbitals, the Parr–Chen circulant orbitals, and the optimum delocalized orbitals is studied by numerical calculations in extended systems.  相似文献   

2.
We report a measurement of electron momentum distributions of valence orbitals of cyclopentene employing symmetric noncoplanar (e, 2e) kinematics at impact energies of 1200 and 1600 eV plus the binding energy. Experimental momentum profiles for individual ionization bands are obtained and compared with theoretical calculations considering nuclear dynamics by harmonic analytical quantum mechanical and thermal sampling molecular dynamics approaches. The results demonstrate that molecular vibrational motions including ring-puckering of this flexible cyclic molecule have obvious influences on the electron momentum profiles for the outer valence orbitals, especially in the low momentum region. For π*-like molecular orbitals 3a'', 2a'', and 3a', the impact-energy dependence of the experimental momentum profiles indicates a distorted wave effect.  相似文献   

3.
The valence atomic orbitals (VAO 's) of several linear nitriles are determined using non-empirical SCF –LCAO –MO wave functions expanded in a minimal (CN?, HCN, FCN, C2N2), double-zeta (CN?, HCN), or double-zeta + polarization (HCN) basis of Slater atomic orbitals (AO 's). The molecular energy of each system (except the double-zeta + polarization HCN system) is partitioned according to the procedure of Ruedenberg to obtain numerical values of nitrile C and N atomic and C?N bond components of the energy. In addition, the nitrile results are compared with minimal AO basis results obtained previously by other authors for homonuclear diatomics, diatomic hydrides and H2O. The numerical data are used to test the internal self-consistency of the various definitions entering the partitioning method, i.e. whether or not analogous quantities assume similar values in chemically similar situations. The analysis of nitrile SCF –MO wave functions in terms of the set of VAO 's characteristic of the system under consideration is shown to be a promising approach to the problem of extracting useful information from the wave functions. In general, numerical results for the nitrile systems studied are fairly consistent with the concepts on which the partitioning method is based: promotion, quasi-classical interaction, sharing penetration, sharing interference and charge transfer. However, the VAO expansions for several energy components need to be investigated further and possibly revised.  相似文献   

4.
Using the natural bond orbital method, one may associate the valence bond configuration and Lewis structure concepts to wave functions consisting of molecular orbitals and thus gain intuitive insight into the molecular potential energy curves. Natural bond orbital analysis of the restricted open shell Hartree–Fock and unrestricted Hartree–Fock wave functions for the BeH ground state provides an intuitive model to help understand the nature of the bonding in this open shell species. The contrasting behavior of the bonding orbitals for different spins can be attributed to differences in the Pauli repulsive interactions with the lonepair orbitals. Such behavior occurs in BeH(2Σ) but does not in CO+(2Π) because the Pauli repulsion depends on the orbital overlap.  相似文献   

5.
A method of expansion of molecular orbital wave functions into valence bond (VB ) functions is extended to molecular fragments. The wave function is projected onto a basis of mixed determinants, involving molecular orbitals as well as fragment atomic orbitals, and is further expressed as a linear combination of VB functions, characteristic of structural formulas of the fragment but whose remaining bonds are frozen. Structural weights for the fragment are deduced from this expression. Delocalized molecular orbitals are used as a startpoint, as they are after an ordinary SCF calculation. Wave functions of medium-sized molecules may be analyzed with reasonable storage requirements in a computer.  相似文献   

6.
价键理论新进展   总被引:1,自引:0,他引:1  
概要介绍了现代价键理论的几个主要方法,并讨论了它们各自的特点及其发展现状,并重点介绍了键表方法的基本理论、计算程序及一些应用。  相似文献   

7.
Formulas are derived for the density matrices belonging to an n-particle wave function built on the basis of single-center explicitly correlated Gaussian basis functions. An explicit formula for the first-order density matrix, P(r1, r1), is obtained for computing the probability distribution P(r1, r1). Other formulas are derived for matrix elements of the first-order density operator P on a basis of single-particle Gaussian orbitals so that natural orbitals (NOs) can be expressed in such a basis. The method is illustrated for the case of the ground state of the helium atom using the 16-term (geminal) wave function by Singer and Longstaff (E = −2.90233 au) and a set of even-tempered Gaussian orbitals. The resulting natural orbitals compare favorably with natural orbitals from Cl expansions. The method is also applied to our 20 term (trimal) wave function for the ground state of dipositronium (E = −0.51560 au). Analysis is made in this case for pair correlation functions of both the electron-electron and the positron-electron pairs; results include the radial distributions of these pairs and their relative angular momentum. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
A full implementation of analytical energy gradients for molecular and periodic systems is reported in the TURBOMOLE program package within the framework of Kohn–Sham density functional theory using Gaussian‐type orbitals as basis functions. Its key component is a combination of density fitting (DF) approximation and continuous fast multipole method (CFMM) that allows for an efficient calculation of the Coulomb energy gradient. For exchange‐correlation part the hierarchical numerical integration scheme (Burow and Sierka, Journal of Chemical Theory and Computation 2011, 7, 3097) is extended to energy gradients. Computational efficiency and asymptotic O(N) scaling behavior of the implementation is demonstrated for various molecular and periodic model systems, with the largest unit cell of hematite containing 640 atoms and 19,072 basis functions. The overall computational effort of energy gradient is comparable to that of the Kohn–Sham matrix formation. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
Approximate and ab initio molecular wave functions are obtained using Gaussian expansions of different length for the Slater orbitals. The expectation values of several one-electron operators are obtained and the accuracy of different wave functions discussed.  相似文献   

10.
Core molecular orbital contribution to the electronic structure of N2O isomers has been studied using quantum mechanical density functional theory combined with a plane wave impulse approximation method. Momentum distributions of wave functions for inner shell molecular orbitals of the linear NNO, cyclic and linear NON isomers of N2O are calculated through the (e, 2e) differential cross sections in momentum space. This is possible because this momentum distribution is directly proportional to the modulus squared of the momentum space wave function for the molecular orbital in question. While the momentum distributions of the NNO and cyclic N2O isomers demonstrate strong atomic orbital characteristics in their core space, the outer core molecular orbitals of the linear NON isomer exhibit configuration interactions between them and the valence molecular orbitals. It is suggested that the frozen core approximation breaks down in the prediction of the electronic structure of such an isomer. Core molecular orbital contributions to the electronic structure can alter the order of total energies of the isomers and lead to incorrect conclusions of the stability among the isomers. As a result, full electron calculations should be employed in the study of N2O isomerization.  相似文献   

11.
The one-center expansion (OCE ) method is extended to evaluate molecular wave functions for molecules with heavy off-center nuclei. This extension is achieved through the use of model potentials (MP ) to approximate the highly bound core orbitals. The remaining diffuse valence charge distribution is then rather easy to simulate using OCE . The formulation of the method is described. New molecular integrals are solved to a high degree of accuracy. Successful results are reported for H2O, H2S, and N2. The valence electron distributions and orbital energies are in good agreement with those obtained from more complete calculations. The method combines the computational economy of both OCE and MP procedures, resulting in a potentially useful package for further chemical applications.  相似文献   

12.
Spin-orbit interactions among the ground and the first few excited electronic states of SO2, are computed with ab initio molecular wave functions and Gaussian atomic orbitals. All spin-other orbits contributions to the matrix elements are included. The computed intensity of the first singlet–triplet transition is found to be in broad agreement with experiment and sensitive to an extension of the configuration interaction expansion of molecular wave functions. Also, the splitting of sulfur LII ,III states in SO2 is derived as an example of large spin-orbit interactions among electronic states.  相似文献   

13.
A non‐iterative algorithm for the localization of molecular orbitals (MOs) from complete active space self consistent field (CASSCF) and for single‐determinantal wave functions on predefined moieties is given. The localized fragment orbitals can be used to analyze chemical reactions between fragments and also the binding of fragments in the product molecule with a fragments‐in‐molecules approach by using a valence bond expansion of the CASSCF wave function. The algorithm is an example of the orthogonal Procrustes problem, which is a matrix optimization problem using the singular value decomposition. It is based on the similarity of the set of MOs for the moieties to the localized MOs of the molecule; the similarity is expressed by overlap matrices between the original fragment MOs and the localized MOs. For CASSCF wave functions, localization is done independently in the space of occupied orbitals and active orbitals, whereas, the space of virtual orbitals is mostly uninteresting. Localization of Hartree–Fock or Kohn–Sham density functional theory orbitals is not straightforward; rather, it needs careful consideration, because in this case some virtual orbitals are needed but the space of virtual orbitals depends on the basis sets used and causes considerable problems due to the diffuse character of most virtual orbitals. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
PSI3 is a program system and development platform for ab initio molecular electronic structure computations. The package includes mature programming interfaces for parsing user input, accessing commonly used data such as basis‐set information or molecular orbital coefficients, and retrieving and storing binary data (with no software limitations on file sizes or file‐system‐sizes), especially multi‐index quantities such as electron repulsion integrals. This platform is useful for the rapid implementation of both standard quantum chemical methods, as well as the development of new models. Features that have already been implemented include Hartree‐Fock, multiconfigurational self‐consistent‐field, second‐order Møller‐Plesset perturbation theory, coupled cluster, and configuration interaction wave functions. Distinctive capabilities include the ability to employ Gaussian basis functions with arbitrary angular momentum levels; linear R12 second‐order perturbation theory; coupled cluster frequency‐dependent response properties, including dipole polarizabilities and optical rotation; and diagonal Born‐Oppenheimer corrections with correlated wave functions. This article describes the programming infrastructure and main features of the package. PSI3 is available free of charge through the open‐source, GNU General Public License. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007  相似文献   

15.
The Lagrange interpolation of molecular orbital (LIMO) method, which reduces the number of self‐consistent field iterations in ab initio molecular dynamics simulations with the Hartree–Fock method and the Kohn–Sham density functional theories, is extended to the theory of multiconfigurational wave functions. We examine two types of treatments for the active orbitals that are partially occupied. The first treatment, as denoted by LIMO(C), is a simple application of the conventional LIMO method to the union of the inactive core and the active orbitals. The second, as denoted by LIMO(S), separately treats the inactive core and the active orbitals. Numerical tests to compare the two treatments clarify that LIMO(S) is superior to LIMO(C). Further applications of LIMO(S) to various systems demonstrate its effectiveness and robustness. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
The Td ‐symmetric [CsO4]+ ion, featuring Cs in an oxidation state of 9, is computed to be a minimum. Cs uses outer core 5s and 5p orbitals to bind the oxygen atoms. The valence Cs 6s orbital lies too high to be involved in bonding, and contributes to Rydberg levels only. From a molecular orbital perspective, the bonding scheme is reminiscent of XeO4: an octet of electrons to bind electronegative ligands, and no low‐lying acceptor orbitals on the central atom. In this sense, Cs+ resembles hypervalent Xe.  相似文献   

17.
A detailed study on the accuracy attainable with numerical atomic orbitals in the context of pseudopotential first-principles density functional theory is presented. Dimers of first- and second-row elements are analyzed: bond lengths, atomization energies, and Kohn-Sham eigenvalue spectra obtained with localized orbitals and with plane-wave basis sets are compared. For each dimer, the cutoff radius, the shape, and the number of the atomic basis orbitals are varied in order to maximize the accuracy of the calculations. Optimized atomic orbitals are obtained following two routes: (i) maximization of the projection of plane wave results into atomic orbital basis sets and (ii) minimization of the total energy with respect to a set of primitive atomic orbitals as implemented in the OPENMX software package. It is found that by optimizing the numerical basis, chemical accuracy can be obtained even with a small set of orbitals.  相似文献   

18.
19.
For molecular hydrogen in the triplet state 3Σu +, the nodal surfaces of the wave function corresponding to the minimum basis set of Slater orbitals in the Hartree—Fock approximation and those of the wave function used in calculations by the diffusion quantum Monte Carlo method were plotted and analyzed. Taking account of the condition for antisymmetrical wave function of the triplet state 3 S of He atom, the Hartree-Fock approximation in the minimum basis set of one-electron orbitals is inappropriate for a priori determination of the nodal surfaces of many-electron wave functions (MWF). An MWF quantum chemical method developed by the authors is outlined. The alternative nodal surfaces for H2 (3Σu +) a priori specified in this method are presented.  相似文献   

20.
The natural linear-scaled coupled-cluster (NLSCC) method ( Flocke, N.; Bartlett, R. J. J. Chem. Phys. 2004, 121, 10935 ) is extended to include approximate triple excitations via a coupled-cluster with single, double, and triple excitation method (CCSDT-3). The triples contribution can potentially be embedded in a larger singles and doubles region. NLSCC exploits the extensivity of the CC wave function to represent it in terms of transferable natural localized molecular orbitals (NLMOs) or functional groups thereof that are obtained from small quantum mechanical (QM) regions. Both occupied and virtual NLMOs are local because they derive from the single-particle density matrix. Noncanonical triples amplitudes are avoided by applying the unitary localization matrix to the canonical CC wave function for a QM region. A generalized NLMO code interfaced to the ACES II quantum chemistry software package provides NLMOs for the relevant number of atoms in a given functional group. Applications include linear polyglycine and the pentapeptide met-enkephalin, which was chosen as a more realistic three-dimensional system with nontrivial side chains. The results show that the triples contributions are quite large for aromatic bonds suggesting an interesting active space method for triples in which different bonds require different excitation levels. The NLSCC approach recovers a very large percentage (>99%) of the CCSD or CCSDT-3 correlation energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号