首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
The heat equation is solved by using a finite volume discretization in a domain that consists of a two-dimensional central node and several one-dimensional outgoing branches. Several interface connection options to match the submodels set on the node and on the branches, with or without continuity, are looked at. For each of them, a monolithic scheme is defined, and existence and uniqueness of the solution is proved. New schemes are deduced, which are obtained through domain decomposition methods in the form of interface systems, with one or two unknowns per interface. A comparative systematic study is carried out from an algebraic and numerical point of view according to the interface conditions: Dirichlet, Neumann, or Robin. An efficient diagonal preconditioning is proposed.  相似文献   

2.
An incompressible Navier–Stokes solver using curvilinear body‐fitted collocated grid has been developed to solve unconfined flow past arbitrary two‐dimensional body geometries. In this solver, the full Navier–Stokes equations have been solved numerically in the physical plane itself without using any transformation to the computational plane. For the proper coupling of pressure and velocity field on collocated grid, a new scheme, designated ‘consistent flux reconstruction’ (CFR) scheme, has been developed. In this scheme, the cell face centre velocities are obtained explicitly by solving the momentum equations at the centre of the cell faces. The velocities at the cell centres are also updated explicitly by solving the momentum equations at the cell centres. By resorting to such a fully explicit treatment considerable simplification has been achieved compared to earlier approaches. In the present investigation the solver has been applied to unconfined flow past a square cylinder at zero and non‐zero incidence at low and moderate Reynolds numbers and reasonably good agreement has been obtained with results available from literature. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号