首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent experimental investigations demonstrated the generation of singlet oxygen during charging at high potentials in lithium/oxygen batteries. To contribute to the understanding of the underlying chemical reactions a key step in the mechanism of the charging process, namely, the dissociation of the intermediate lithium superoxide to oxygen and lithium, was investigated. Therefore, the corresponding dissociation paths of the molecular model system lithium superoxide (LiO2) were studied by CASSCF/CASPT2 calculations. The obtained results indicate the presence of different dissociation paths over crossing points of different electronic states, which lead either to the energetically preferred generation of triplet oxygen or the energetically higher lying formation of singlet oxygen. The dissociation to the corresponding superoxide anion is energetically less preferred. The understanding of the detailed reaction mechanism allows the design of strategies to avoid the formation of singlet oxygen and thus to potentially minimize the degradation of materials in alkali metal/oxygen batteries. The calculations demonstrate a qualitatively similar but energetically shifted behavior for the homologous alkali metals sodium and potassium and their superoxide species. Fundamental differences were found for the covalently bound hydroperoxyl radical.  相似文献   

2.
Ab initio complete active space self‐consistent field (CASSCF) and the second order multireference Møller‐Plesset calculations have been performed to examine the photochemical behavior of styrene upon the strong S0‐S2 electronic excitation in the low‐lying excited states. The optimized structure at the S2/S1 conical intersection (CIX) is characterized by a quinoid structure. The transition state (TS) in S1 is in the vicinity of the S2/S1‐CIX. At the S1‐TS, two reaction paths branch. One is the relaxation into the stable structure in S1 and then emission into S0. The other is the radiationless decay through the S1/S0‐CIX. © 2002 Wiley Periodicals, Inc. J Comput Chem 10: 950–956, 2002  相似文献   

3.
The electronic structures of styrene in the Franck‐Condon region have been theoretically examined by means of ab initio complete active space self‐consistent field (CASSCF) and the second order multireference Møller‐Plesset calculations. The optimized structure of styrene in S0 is planar but the torsional motion of the phenyl group is very floppy. The S1 state is assigned to the local π–π* excitation within the benzene ring. On the other hand, S2, above S1 by 0.561 eV, is assigned to a state that resembles the so‐called V‐state of ethylene. The transition intensity of S0–S1 is weak, while that of S0–S2 is strong. This is in good agreement with the experimental absorption spectrum where the S0–S1 and S0–S2 transitions are in the energy range of 290–220 nm. The optimized geometry of S1, characterized by an enlarged benzene ring and its vibrational analyses, further justifies the assignment of the S1 state. © 2002 Wiley Periodicals, Inc. J Comput Chem 9: 928–937, 2002  相似文献   

4.
5.
Natural orbital functional theory (NOFT) is used for the first time in the analysis of different types of chemical bonds. Concretely, the Piris natural orbital functional PNOF5 is used. It provides a localization scheme that yields an orbital picture which agrees very well with the empirical valence shell electron pair repulsion theory (VSEPR) and Bent’s rule, as well as with other theoretical pictures provided by valence bond (VB) or linear combination of atomic orbitals–molecular orbital (LCAO‐MO) methods. In this context, PNOF5 provides a novel tool for chemical bond analysis. In this work, PNOF5 is applied to selected molecules that have ionic, polar covalent, covalent, multiple (σ and π), 3c–2e, and 3c–4e bonds.  相似文献   

6.
7.
The intrinsic dynamic and static nature of noncovalent Br-∗-Br interactions in neutral polybromine clusters is elucidated for Br4–Br12, applying QTAIM dual-functional analysis (QTAIM-DFA). The asterisk (∗) emphasizes the existence of the bond critical point (BCP) on the interaction in question. Data from the fully optimized structures correspond to the static nature of the interactions. The intrinsic dynamic nature originates from those of the perturbed structures generated using the coordinates derived from the compliance constants for the interactions and the fully optimized structures. The noncovalent Br-∗-Br interactions in the L-shaped clusters of the Cs symmetry are predicted to have the typical hydrogen bond nature without covalency, although the first ones in the sequences have the vdW nature. The L-shaped clusters are stabilized by the n(Br)→σ*(Br–Br) interactions. The compliance constants for the corresponding noncovalent interactions are strongly correlated to the E(2) values based on NBO. Indeed, the MO energies seem not to contribute to stabilizing Br4 (C2h) and Br4 (D2d), but the core potentials stabilize them, relative to the case of 2Br2; this is possibly due to the reduced nuclear–electron distances, on average, for the dimers.  相似文献   

8.
The reaction between the cyano radical CN and cyanoacetylene molecule HC3N is of great interest in different astronomical fields, from star-forming regions to planetary atmospheres. In this work, we present a new synergistic theoretical approach for the derivation of the rate coefficient for gas phase neutral-neutral reactions. Statistic RRKM calculations on the Potential Energy Surface are coupled with a semiempirical analysis of the initial bimolecular interaction. The value of the rate coefficient for the HC3N + CN → H + NCCCCN reaction obtained with this method is compared with previous theoretical and experimental investigations, showing strengths and weaknesses of the new presented approach.  相似文献   

9.
10.
The water-exchange mechanism of [UO(2)(OH(2))(5)](2+) has been reinvestigated by using ab initio molecular orbital (MO) methods. The geometries and the vibrational frequencies were computed with CAS-SCF(12/11)-SCRF and CAS-SCF(12/11)-PCM methods, which take into account static electron correlation (using the complete active space self-consistent field (CAS-SCF) technique, based on an active space of 12 electrons in 11 orbitals) and hydration (using the self-consistent reaction field (SCRF) and polarizable continuum model (PCM) techniques). The total energies were computed with multiconfiguration quasi-degenerate second-order perturbation theory, the MCQDPT2(12/11)-PCM method, which treats static and dynamic electron correlation as well as hydration. The adequacies of other currently used quantum chemical methods, MP2, CCSD(T), B3 LYP, and BLYP, are discussed. For the associative and dissociative pathways, thermodynamic activation parameters (DeltaH( not equal), DeltaS( not equal), and DeltaG( not equal)) were computed. For the associative mechanism, the calculated DeltaH( not equal) and DeltaG( not equal) values agree with experiment, whereas for the dissociative mechanism, they are higher by approximately 20 kJ mol(-1). The dissociative mechanism is preferred for substitution reactions of uranyl(VI) complexes with ligands that are stronger electron donors than water. The question of whether a concerted (I(a) or I(d)) or a stepwise (A or D) mechanism operates is discussed on the basis of the computed lifetime of the respective intermediate, and the duration of the vibration with which the intermediate is transformed into the product.  相似文献   

11.
12.
By using complementary experimental techniques and first‐principles theoretical calculations, magnetic anisotropy in a series of five hexacoordinated nickel(II) complexes possessing a symmetry close to C2v, has been investigated. Four complexes have the general formula [Ni(bpy)X2]n+ (bpy=2,2′‐bipyridine; X2=bpy ( 1 ), (NCS?)2 ( 2 ), C2O42? ( 3 ), NO3? ( 4 )). In the fifth complex, [Ni(HIM2‐py)2(NO3)]+ ( 5 ; HIM2‐py=2‐(2‐pyridyl)‐4,4,5,5‐tetramethyl‐4,5‐dihydro‐1H‐imidazolyl‐1‐hydroxy), which was reported previously, the two bpy bidentate ligands were replaced by HIM2‐py. Analysis of the high‐field, high‐frequency electronic paramagnetic resonance (HF‐HFEPR) spectra and magnetization data leads to the determination of the spin Hamiltonian parameters. The D parameter, corresponding to the axial magnetic anisotropy, was negative (Ising type) for the five compounds and ranged from ?1 to ?10 cm?1. First‐principles SO‐CASPT2 calculations have been performed to estimate these parameters and rationalize the experimental values. From calculations, the easy axis of magnetization is in two different directions for complexes 2 and 3 , on one hand, and 4 and 5 , on the other hand. A new method is proposed to calculate the g tensor for systems with S=1. The spin Hamiltonian parameters (D (axial), E (rhombic), and gi) are rationalized in terms of ordering of the 3 d orbitals. According to this orbital model, it can be shown that 1) the large magnetic anisotropy of 4 and 5 arises from splitting of the eg‐like orbitals and is due to the difference in the σ‐donor strength of NO3? and bpy or HIM2‐py, whereas the difference in anisotropy between the two compounds is due to splitting of the t2g‐like orbitals; and 2) the anisotropy of complexes 1 – 3 arises from the small splitting of the t2g‐like orbitals. The direction of the anisotropy axis can be rationalized by the proposed orbital model.  相似文献   

13.
This paper reports a theoretical analysis of the electronic structure and magnetic properties of a tetranuclear CuII complex, [Cu4(HL)4], which has a 4+2 cubane‐like structure (H3L=N,N′‐(2‐hydroxypropane‐1,3‐diyl)bis(acetylacetoneimine)). These theoretical calculations indicate a quintet (S=2) ground state; the energy‐level distribution of the magnetic states confirm Heisenberg behaviour and correspond to an S4 spin–spin interaction model. The dominant interaction is the ferromagnetic coupling between the pseudo‐dimeric units (J1=22.2 cm?1), whilst a weak and ferromagnetic interaction is found within the pseudo‐dimeric units (J2=1.4 cm?1). The amplitude and sign of these interactions are consistent with the structure and arrangement of the magnetic Cu 3d orbitals; they accurately simulate the thermal dependence of magnetic susceptibility, but do not agree with the reported J values (J1=38.4 cm?1, J2=?18.0 cm?1) that result from the experimental fitting. This result is not an isolated case; many other polynuclear systems, in particular 4+2 CuII cubanes, have been reported in which the fitted magnetic terms are not consistent with the geometrical features of the system. In this context, theoretical evaluation can be considered as a valuable tool in the interpretation of the macroscopic behaviour, thus providing clues for a rational and directed design of new materials with specific properties.  相似文献   

14.
15.
16.
17.
18.
The physical nature of aromaticity is addressed at a high ab initio level. It is conclusively shown that the extrinsic aromatic stabilization energy of benzene E(ease)B, estimated relative to its linear polyene counterpart(s), is very well-reproduced at the Hartree-Fock (HF) level. This is a consequence of the fact that the contributions arising from the zero-point vibrational energy (ZPVE) and electron correlation are rather small. More specifically, they yield together 2.0 kcalmol(-1) to the destabilization of benzene. A careful scrutiny of the HF energies by virial theorem shows further that the kinetic energies of the sigma and pi electrons E(T)HF(sigma) and E(T)HF(pi) are strictly additive in the gauge linear zig-zag polyenes, which also holds for their sum Et(T)HF This finding has the important corollary that E(ease)B is little dependent on the choice of the homodesmic reactions involving zig-zag polyenes. A detailed physical analysis of the sigma- and pi-electron contributions to extrinsic aromaticity requires explicit introduction of the potential energy terms Vne, Vee, and Vnn, which signify Coulomb interactions between the electrons and the nuclei. The Vee term involves repulsive interaction Vee(sigmapi) between the sigma and pi electrons, which cannot be unequivocally resolved into sigma and pi contributions. The same holds for the Vnn energy, which implicitly depends on the electron density distribution via the Born-Oppenheimer (BO) potential energy surface. Several possibilities for partitioning Vee(sigmapi) and Vnn terms into sigma and pi components are examined. It is argued that the stockholder principle is the most realistic, which strongly indicates that E(ease)B is a result of favorable sigma-framework interactions. In contrast, the pi-electron framework prefers the open-chain linear polyenes.  相似文献   

19.
《Comptes Rendus Chimie》2015,18(9):935-944
Peracetylated d-glucopyranose has a high solubility in CO2 and can be a promising phase-change physical solvent or absorbent for CO2, as reported recently. However, peracetylated d-glucopyranose is unstable under acidic atmospheres, especially in sulfur-containing waste gases, and the possibly major decomposition products are 2,3,4,6-tetra-O-acetyl-d-glucopyranose, 1-thiol-d-glucopyranose tetraacetate, and 1-mercaptoethyl-d-glucopyranose tetraacetate. Therefore, it is highly interesting to investigate the interaction between CO2 and these three compounds using ab initio calculations, including geometry optimizations with HF/3-21G, B3LYP/6-31+G** and single-point energy calibration with MP2/aug-cc-pVDZ. The results indicate that the electrostatic interactions between the substrates and CO2 are mainly influenced by the interaction distance and the numbers of negative charge donors or the interacting pairs involved in the complex. It is furthermore found that ΔE increases significantly if S and O atoms could interact with CO2 simultaneously. The binding energy is irrelevant if one considers the chemical environment of the O atom (i.e. OAc, OE or OS) or the S atom (i.e. SEt or SH), and the electronegativity difference between the S and O atoms. The three substrates studied are still excellent CO2-philes, although their average ΔE (–20 kJ/mol) is slightly lower than that of peracetylated d-glucose (–22 kJ/mol), which has one more O atom that can interact with CO2. Therefore, the applications of carbohydrates can be expanded to include adsorbents for CO2, SO2 or both, and the functional groups attached to the carbohydrate can vary from those to the acetyl groups.  相似文献   

20.
The structure of 1,3-dinitrobenzene radical anion in the doublet ground and lowest excited states was studied by ab initio multiconfiguration CASSCF methods. The results of calculations suggest the existence of one symmetrical and two asymmetrical structures of the radical anion. The energies of these structures were estimated. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2645–2647, December, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号