首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, lattice Boltzmann model for a generalized Gardner equation with time-dependent variable coefficients, which can provide some more realistic models than their constant-coefficient counterparts, is derived through selecting equilibrium distribution function and adding the compensate function, appropriately. Effects and approximate value range of the free parameters, which are introduced to adjust the single relaxation time and equilibrium distribution function, are discussed in detail, as well as the impact of the lattice space step and velocity. Numerical simulations in different situations of this equation are conducted, including the propagation and interaction of the solitons, the evolution of the non-propagating soliton and the propagation of the double-pole solutions. It is found that the numerical results match well with the analytical solutions, which demonstrates that the current lattice Boltzmann model is a satisfactory and efficient algorithm.  相似文献   

2.
通过Chapman-Enskog展开技术和多尺度分析,建立了一种新的D1Q4带修正项的四阶格子Boltzmann模型,一类非线性偏微分方程从连续的Boltzmann方程得到正确恢复.统一了KdV和Burgers等已知方程类型的格子BGK模型,还首次给出了组合KdV-Burgers,广义Burgers—Huxley等方程...  相似文献   

3.
In this paper, a general propagation lattice Boltzmann model for a variable-coefficient compound Korteweg-de Vries-Burgers (vc-cKdVB) equation is investigated through selecting equilibrium distribution function and adding a compensation function, which can provide some more realistic models than their constant-coefficient counterparts in fluids or plasmas. Chapman–Enskog analysis shows that the vc-gKdVB equation can be recovered correctly from the present model. Numerical simulations in different situations of this equation are conducted, including the propagation and interaction of the bell-type, kink-type and periodic-depression solitons and the evolution of the shock-wave solutions. It is found that the numerical results match well with the analytical solutions, which demonstrates that the current lattice Boltzmann model is a satisfactory and efficient algorithm. In addition, it is also shown the present model could be more stable and more accurate than the standard lattice Bhatnagar–Gross–Krook model through adjusting the two free parameters introduced into the propagation step.  相似文献   

4.
In this paper, a general propagation lattice Boltzmann model for variable-coefficient non-isospectral Korteweg–de Vries (vc-nKdV) equation, which can describe the interfacial waves in a two layer liquid and Alfvén waves in a collisionless plasma, is proposed by selecting appropriate equilibrium distribution function and adding the compensate function. The Chapman–Enskog analysis shows that the vc-nKdV equation can be recovered correctly from the present model. Numerical simulation for the non-propagating one soliton of this equation in different situations is conducted as validation. It is found that the numerical results match well with the analytical solutions, which demonstrates that the current general propagation lattice Boltzmann model is a satisfactory and efficient method, and could be more stable and accurate than the standard lattice Bhatnagar–Gross–Krook model.  相似文献   

5.
A new transformation method is developed using the general sine-Gordon travelling wave reduction equation and a generalized transformation. With the aid of symbolic computation, this method can be used to seek more types of solutions of nonlinear differential equations, which include not only the known solutions derived by some known methods but new solutions. Here we choose the double sine-Gordon equation, the Magma equation and the generalized Pochhammer–Chree (PC) equation to illustrate the method. As a result, many types of new doubly periodic solutions are obtained. Moreover when using the method to these special nonlinear differential equations, some transformations are firstly needed. The method can be also extended to other nonlinear differential equations.  相似文献   

6.
刘芳  施卫平 《应用数学和力学》2015,36(11):1158-1166
对具有非线性源项和非线性扩散项的热传导方程建立格子Boltzmann求解模型.在演化方程中增加了两个关于源项分布函数的微分算子,对演化方程实施Chapman-Enskog展开.通过对演化方程的进一步改进,恢复出具有高阶截断误差的宏观方程.对不同参数选取下的非线性热传导方程进行了数值模拟,数值解与精确解吻合得很好.该模型也可以用于同类型的其他偏微分方程的数值计算中.  相似文献   

7.
Recently, we have presented a sine-Gordon expansion method to construct new exact solutions of a wide of continuous nonlinear evolution equations. In this paper we further develop the method to be the discrete sine-Gordon expansion method in nonlinear differential-difference equations, in particular, discrete soliton equations. We choose the modified Volterra lattice and Volterra lattice equation to illustrate the new method such as many types of new exact solutions are obtained. Moreover some figures display the profiles of the obtained solutions. Our method can be also applied to other discrete soliton equations.  相似文献   

8.
In this paper, a lattice Boltzmann model is presented for solving one and two-dimensional Fokker-Planck equations with variable coefficients. In particular, it is efficient to simulate one-dimensional stochastic processes governed by the Fokker-Planck equation. Numerical results agree well with the exact solutions, which indicates that the proposed model is suitable for solving the Fokker-Planck equation.  相似文献   

9.
The lattice evolution method for solving the nonlinear Poisson–Boltzmann equation in confined domain is developed by introducing the second-order accurate Dirichlet and Neumann boundary implements, which are consistent with the non-slip model in lattice Boltzmann method for fluid flows. The lattice evolution method is validated by comparing with various analytical solutions and shows superior to the classical numerical solvers of the nonlinear Poisson equations with Neumann boundary conditions. The accuracy and stability of the method are discussed. This lattice evolution nonlinear Poisson–Boltzmann solver is suitable for efficient parallel computing, complex geometry conditions, and easy extension to three-dimensional cases.  相似文献   

10.
In this paper, we study the generalized coupled integrable dispersionless (GCID) equations and construct two integrable discrete analogues including a semi-discrete system and a full-discrete one. The results are based on the relations among the GCID equations, the sine-Gordon equation and the two-dimensional Toda lattice equation. We also present the N-soliton solutions to the semi-discrete and fully discrete systems in the form of Casorati determinant. In the continuous limit, we show that the fully discrete GCID equations converge to the semi-discrete GCID equations, then further to the continuous GCID equations. By using the integrable semi-discrete system, we design two numerical schemes to the GCID equations and carry out several numerical experiments with solitons and breather solutions.  相似文献   

11.
In this paper, a special lattice Boltzmann model is proposed to simulate two-dimensional unsteady Burgers’ equation. The maximum principle and the stability are proved. The model has been verified by several test examples. Excellent agreement is obtained between numerical predictions and exact solutions. The cases of steep oblique shock waves are solved and compared with the two-point compact scheme results. The study indicates that lattice Boltzmann model is highly stable and efficient even for the problems with severe gradients.  相似文献   

12.
In this paper, the two-dimensional Burgers’ equations with two variables are solved numerically by the lattice Boltzmann method. The lattice Bhatnagar–Gross–Krook model we used can recover the macroscopic equation with the second order accuracy. Numerical solutions for various values of Reynolds number, computational domain, initial and boundary conditions are calculated and validated against exact solutions or other published results. It is concluded that the proposed method performs well.  相似文献   

13.
High order compact Alternating Direction Implicit scheme is given for solving the generalized sine-Gordon equation in a two-dimensional rectangular domain. We apply the compact finite difference operators to obtain a fourth order discretization for the second order space derivatives, and we give a linearized three time level algorithm for solving the original nonlinear equation. Error estimate is given by the energy method. Numerical results are provided to verify the accuracy and efficiency of this algorithm.  相似文献   

14.
In this paper, a novel lattice Boltzmann model is proposed to solve the Poisson equation through modifying equilibrium distribution function. Compared with previous models, which can be viewed as the solvers to diffusion equation, the present model is a genuine solver to the Poisson equation, and the transient term derived by previous models is eliminated. Numerical solutions agree well with analytical solutions, which indicates the potential of the present model for solving the Poisson equation.  相似文献   

15.
In this paper, a finite element collocation approach using cubic B-splines is employed for the numerical solution of a generalized form of the nonlinear Klein-Gordon equation. The efficiency of the method is tested on a number of examples that represent special cases of the extended equation including the sine-Gordon equation. The numerical results are compared with existing numerical and analytic solutions and the outcomes confirm that the scheme yields accurate and reliable results even when few nodes are used at the time levels.  相似文献   

16.
A lattice Boltzmann model for two-dimensional incompressible flows with eddy–stream equations is proposed. By using two kinds of distribution functions and employing several higher-order moments of equilibrium distribution functions, the eddy equation and stream function equation with the second-order truncation error are obtained. In the numerical examples, we compared the numerical results of this scheme with those obtained by other classical method. The numerical results agree well with the classical ones.  相似文献   

17.
A lattice Boltzmann method (LBM) 8-neighbor model (9-bit model) is presented to solve mathematical–physical equations, such as, Laplace equation, Poisson equation, Wave equation and Burgers equation. The 9-bit model has been verified by several test cases. Numerical simulations, including 1D and 2D cases, of each problem are shown, respectively. Comparisons are made between numerical predictions and analytic solutions or available numerical results from previous researchers. It turned out that the 9-bit model is computationally effective and accurate for all different mathematical–physical equations studied. The main benefits of the new model proposed is that it is faster than the previous existing models and has a better accuracy.  相似文献   

18.
The method of lines is used to transform the initial/boundary-value problem associated with the two-dimensional sine-Gordon equation in two space variables into a second-order initial-value problem. The finite-difference methods are developed by replacing the matrix-exponential term in a recurrence relation with rational approximants. The resulting finite-difference methods are analyzed for local truncation error, stability and convergence. To avoid solving the nonlinear system a predictor–corrector scheme using the explicit method as predictor and the implicit as corrector is applied. Numerical solutions for cases involving the most known from the bibliography line and ring solitons are given.  相似文献   

19.
The Zakharov–Kuznetsov equation is considered, which is an equation describing two dimensional weakly nonlinear ion-acoustic waves in plasma. We focus on using the lattice Boltzmann method to study the Zakharov–Kuznetsov equation. A lattice Boltzmann model is constructed. In numerical experiments, the propagation of the single solitary wave and the collision of double solitary waves are simulated. The results with different parameters are investigated and compared.  相似文献   

20.
We focus on investigating a generic two-dimensional sine-Gordon equation in nonlinear optics. Based on a viable transformation, the bifurcation analysis of the equation is carried out in this paper. The phase portraits are given and different kinds of traveling wave solutions are obtained. The analytical results are also numerically simulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号