首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
In this article, we consider some properties of positive solutions for a new conformable integro-differential equation with integral boundary conditions and a parameter $$ \left\{ \begin{array}{l} T_{\alpha}u(t)+\lambda f(t,u(t),I_{\alpha}u(t))=0,t\in[0,1],\u(0)=0,u(1)=\beta\int_{0}^{1}u(t)dt ,\beta\in[\frac 32,2), \ \end{array}\right.\nonumber $$ where $\alpha\in(1,2]$, $\lambda$ is a positive parameter, $T_{\alpha}$ is the usual conformable derivative and $I_{\alpha}$ is the conformable integral, $f:[0,1]\times\mathbf{R^{+}}\times\mathbf{R^{+}}\rightarrow \mathbf{R^{+}} $ is a continuous function, where $\mathbf{R^{+}}=[0,+\infty)$. We use a recent fixed point theorem for monotone operators in ordered Banach spaces, and then establish the existence and uniqueness of positive solutions for the boundary value problem. Further, we give an iterative sequence to approximate the unique positive solution and some good properties of positive solution about the parameter $\lambda$. A concrete example is given to better demonstrate our main result.  相似文献   

2.
In this paper, we are concerned with the existence criteria for positive solutions of the following nonlinear arbitrary order fractional differential equations with deviating argument
$\left \{{l@{\quad}l}D_{0^+}^{\alpha}u(t)+h(t)f(u(\theta(t)))=0, & t\in ( 0,1 ),\ n-1<\alpha\leq n,\\[3pt]u^{(i)}(0)=0, & i=0,1,2,\ldots,n-2,\\[3pt][D_{0^+}^{\beta} u(t)]_{t=1}=0, & 1\leq\beta\leq n-2, \right .$\left \{\begin{array}{l@{\quad}l}D_{0^+}^{\alpha}u(t)+h(t)f(u(\theta(t)))=0, & t\in ( 0,1 ),\ n-1<\alpha\leq n,\\[3pt]u^{(i)}(0)=0, & i=0,1,2,\ldots,n-2,\\[3pt][D_{0^+}^{\beta} u(t)]_{t=1}=0, & 1\leq\beta\leq n-2,\end{array} \right .  相似文献   

3.
In this paper, the authors aim at proving two existence results of fractional differential boundary value problems of the form(P_(a,b)){D~αu(x) + f(x, u(x)) = 0, x ∈(0, 1),u(0) = u(1) = 0, D~(α-3)u(0) = a, u(1) =-b,where 3 α≤ 4, Dαis the standard Riemann-Liouville fractional derivative and a, b are nonnegative constants. First the authors suppose that f(x, t) =-p(x)t~σ, with σ∈(-1, 1)and p being a nonnegative continuous function that may be singular at x = 0 or x = 1and satisfies some conditions related to the Karamata regular variation theory. Combining sharp estimates on some potential functions and the Sch¨auder fixed point theorem, the authors prove the existence of a unique positive continuous solution to problem(P_(0,0)).Global estimates on such a solution are also obtained. To state the second existence result, the authors assume that a, b are nonnegative constants such that a + b 0 and f(x, t) = tφ(x, t), with φ(x, t) being a nonnegative continuous function in(0, 1)×[0, ∞) that is required to satisfy some suitable integrability condition. Using estimates on the Green's function and a perturbation argument, the authors prove the existence and uniqueness of a positive continuous solution u to problem(P_(a,b)), which behaves like the unique solution of the homogeneous problem corresponding to(P_(a,b)). Some examples are given to illustrate the existence results.  相似文献   

4.
We study the existence of solutions for the following fractional Hamiltonian systems $$ \left\{ \begin{array}{ll} - _tD^{\alpha}_{\infty}(_{-\infty}D^{\alpha}_{t}u(t))-\lambda L(t)u(t)+\nabla W(t,u(t))=0,\\[0.1cm] u\in H^{\alpha}(\mathbb{R},\mathbb{R}^n), \end{array} \right. ~~~~~~~~~~~~~~~~~(FHS)_\lambda $$ where $\alpha\in (1/2,1)$, $t\in \mathbb{R}$, $u\in \mathbb{R}^n$, $\lambda>0$ is a parameter, $L\in C(\mathbb{R},\mathbb{R}^{n^2})$ is a symmetric matrix, $W\in C^1(\mathbb{R} \times \mathbb{R}^n,\mathbb{R})$. Assuming that $L(t)$ is a positive semi-definite symmetric matrix, that is, $L(t)\equiv 0$ is allowed to occur in some finite interval $T$ of $\mathbb{R}$, $W(t,u)$ satisfies some superquadratic conditions weaker than Ambrosetti-Rabinowitz condition, we show that (FHS)$_\lambda$ has a solution which vanishes on $\mathbb{R}\setminus T$ as $\lambda \to \infty$, and converges to some $\tilde{u}\in H^{\alpha}(\R, \R^n)$. Here, $\tilde{u}\in E_{0}^{\alpha}$ is a solution of the Dirichlet BVP for fractional systems on the finite interval $T$. Our results are new and improve recent results in the literature even in the case $\alpha =1$.  相似文献   

5.
In this paper, by using Krasnoselskii''s fixed-point theorem, some sufficient conditions of existence of positive solutions for the following fourth-order nonlinear Sturm-Liouville eigenvalue problem:\begin{equation*}\left\{\begin{array}{lll} \frac{1}{p(t)}(p(t)u'')''(t)+ \lambda f(t,u)=0, t\in(0,1), \\ u(0)=u(1)=0, \\ \alpha u''(0)- \beta \lim_{t \rightarrow 0^{+}} p(t)u''(t)=0, \\ \gamma u''(1)+\delta\lim_{t \rightarrow 1^{-}} p(t)u''(t)=0, \end{array}\right.\end{equation*} are established, where $\alpha,\beta,\gamma,\delta \geq 0,$ and $~\beta\gamma+\alpha\gamma+\alpha\delta >0$. The function $p$ may be singular at $t=0$ or $1$, and $f$ satisfies Carath\''{e}odory condition.  相似文献   

6.
本文我们考虑如下二阶奇异差分边值问题\begin{equation*}\begin{cases}-\Delta^{2} u(t-1)=\lambda g(t)f(u) ,\ t\in [1,T]_\mathbb{Z},\\u(0)=0,\\ \Delta u(T)+c(u(T+1))u(T+1)=0,\end{cases}\end{equation*}正解的存在性. 其中, $\lambda>0$, $f:(0,\infty)\rightarrow \mathbb{R}$ 是连续的,且允许在~$0$ 处奇异.通过引入一个新的全连续算子, 我们建立正解的存在性.  相似文献   

7.
In this paper, we study a fractional differential equation $$^{c}D^{\alpha}_{0^{+}}u(t)+f(t,u(t))=0,\quad t\in(0, +\infty)$$ satisfying the boundary conditions: $$u^{\prime}(0)=0,\quad \lim_{t\rightarrow +\infty}\,^{c}D^{\alpha-1}_{0^{+}}u(t)=g(u),$$ where $1<\alpha\leqslant2$, $^{c}D^{\alpha}_{0^{+}}$ is the standard Caputo fractional derivative of order $\alpha$. The main tools used in the paper is contraction principle in the Banach space and the fixed point theorem due to D. O''Regan. Some the compactness criterion and existence of solutions are established.  相似文献   

8.
We study large time asymptotic behavior of solutions to the periodic problem for the nonlinear damped wave equation
$ \left\{ {l} u_{tt}+2\alpha u_{t}-\beta u_{xx}=-\lambda \left| u\right| ^{\sigma}u,\text{ }x\in \Omega ,t >0 , \\ u(0,x)=\phi \left( x\right) ,\text{}u_{t}(0,x)=\psi \left( x\right) ,\text{ }x\in \Omega , \right. $ \left\{ \begin{array}{l} u_{tt}+2\alpha u_{t}-\beta u_{xx}=-\lambda \left| u\right| ^{\sigma}u,\text{ }x\in \Omega ,t >0 , \\ u(0,x)=\phi \left( x\right) ,\text{}u_{t}(0,x)=\psi \left( x\right) ,\text{ }x\in \Omega , \end{array} \right.  相似文献   

9.
In this paper, the author proves the existence and uniqueness of nonnegative solution for the first boundary value problem of uniform degenerated parabolic equation $$\[\left\{ {\begin{array}{*{20}{c}} {\frac{{\partial u}}{{\partial t}} = \sum {\frac{\partial }{{\partial {x_i}}}\left( {v(u){A_{ij}}(x,t,u)\frac{{\partial u}}{{\partial {x_j}}}} \right) + \sum {{B_i}(x,t,u)} \frac{{\partial u}}{{\partial {x_i}}}} + C(x,t,u)u\begin{array}{*{20}{c}} {}&{(x,t) \in [0,T]} \end{array},}\{u{|_{t = 0}} = {u_0}(x),x \in \Omega ,}\{u{|_{x \in \partial \Omega }} = \psi (s,t),0 \le t \le T} \end{array}} \right.\]$$ $$\[\left( {\frac{1}{\Lambda }{{\left| \alpha \right|}^2} \le \sum {{A_{ij}}{\alpha _i}{\alpha _j}} \le \Lambda {{\left| \alpha \right|}^2},\forall a \in {R^n},0 < \Lambda < \infty ,v(u) > 0\begin{array}{*{20}{c}} {and}&{v(u) \to 0\begin{array}{*{20}{c}} {as}&{u \to 0} \end{array}} \end{array}} \right)\]$$ under some very weak restrictions, i.e. $\[{A_{ij}}(x,t,r),{B_i}(x,t,r),C(x,t,r),\sum {\frac{{\partial {A_{ij}}}}{{\partial {x_j}}}} ,\sum {\frac{{\partial {B_i}}}{{\partial {x_i}}} \in \overline \Omega } \times [0,T] \times R,\left| {{B_i}} \right| \le \Lambda ,\left| C \right| \le \Lambda ,\],\[\left| {\sum {\frac{{\partial {B_i}}}{{\partial {x_i}}}} } \right| \le \Lambda ,\partial \Omega \in {C^2},v(r) \in C[0,\infty ).v(0) = 0,1 \le \frac{{rv(r)}}{{\int_0^r {v(s)ds} }} \le m,{u_0}(x) \in {C^2}(\overline \Omega ),\psi (s,t) \in {C^\beta }(\partial \Omega \times [0,T]),0 < \beta < 1\],\[{u_0}(s) = \psi (s,0).\]$  相似文献   

10.
设B(t)=(B(t))=(B1(t),B2(t),…,BN(t))为N维Brown运动,设α(x)=(αij(x),1(≤)I(≤)d,1(≤)j(≤)N),β(x)=(βi(x),1(≤)I(≤)d),x∈Rd,1(≤)d(≤)N,α(x)和β(x)有界连续和满足Lipchitz条件,且存在常数c0>0,使得对每个x∈Rd,a(x)=α(x)α(x)*的每个特征根都不小于c0.设dX(t)=α(X(t))dB(t) β(X(t))dt,设d(≥)3.可以证明P(ωDimX(E,ω)=DimGRX(E,ω)=2DimE,(A)E∈B[0,∞))=1.这里X(E,ω)={X(t,ω)t∈E},GRX(E,ω)={(t,X(t,ω))t∈E},DimF表示F的Packing维数.  相似文献   

11.
In this paper,we study the existence of positive solutions for the nonlinear singular third-order three-point boundary value problemu (t) = λa(t)f(t,u(t)),u(0) = u (1) = u (η) = 0,where λ is a positive parameter and 0 ≤ η 1 2 .By using the classical Krasnosel’skii’s fixed point theorem in cone,we obtain various new results on the existence of positive solution,and the solution is strictly increasing.Finally we give an example.  相似文献   

12.
在与线性问题第一特征值相关的条件下,通过应用不动点指数理论讨论了三点边值问题u″ 9(t)f(u)=0,t∈(0,1),u′(0)=0,u(1)=αu(η)正解的存在性,这里η∈(0,1),α∈R且0<α<1.本文结果推广和改进了文献[1]的主要结论.  相似文献   

13.
In this paper, the authors give the local L~2 estimate of the maximal operator S_(φ,γ)~* of the operator family {S_(t,φ,γ)} defined initially by ■which is the solution(when n = 1) of the following dispersive equations(~*) along a curve γ:■where φ : R~+→R satisfies some suitable conditions and φ((-?)~(1/2)) is a pseudo-differential operator with symbol φ(|ξ|). As a consequence of the above result, the authors give the pointwise convergence of the solution(when n = 1) of the equation(~*) along curve γ.Moreover, a global L~2 estimate of the maximal operator S_(φ,γ)~* is also given in this paper.  相似文献   

14.
In this work, we are mainly concerned with the existence of positive solutions for the fractional boundary-value problem $$ \left\{ {\begin{array}{*{20}{c}} {D_{0+}^{\alpha }D_{0+}^{\alpha }u=f\left( {t,u,{u}^{\prime},-D_{0+}^{\alpha }u} \right),\quad t\in \left[ {0,1} \right],} \hfill \\ {u(0)={u}^{\prime}(0)={u}^{\prime}(1)=D_{0+}^{\alpha }u(0)=D_{0+}^{{\alpha +1}}u(0)=D_{0+}^{{\alpha +1}}u(1)=0.} \hfill \\ \end{array}} \right. $$ Here ?? ?? (2, 3] is a real number, $ D_{0+}^{\alpha } $ is the standard Riemann?CLiouville fractional derivative of order ??. By virtue of some inequalities associated with the fractional Green function for the above problem, without the assumption of the nonnegativity of f, we utilize the Krasnoselskii?CZabreiko fixed-point theorem to establish our main results. The interesting point lies in the fact that the nonlinear term is allowed to depend on u, u??, and $ -D_{0+}^{\alpha } $ .  相似文献   

15.
In this paper, the existence of positive solutions of the following third-order three-point boundary value problem with $p$-Laplacian \begin{equation*} \begin{gathered} \ \ \left\{ \begin{array}{l}\displaystyle(\phi_{p}(u''(t)))''+f(t,u(t))=0,\ t\in (0,1),\u(0)=\alpha u(\eta), u(1)=\alpha u(\eta), u''(0)=0,\end{array} \right. \end{gathered} \end{equation*} is studied, where $\phi_{p}(s)=|s|^{p-2}s$, $p>1$. By using the fixed point index method, we establish sufficient conditions for the existence of at least one or at least two positive solutions for the above boundary value problem. The main result is demonstrated by providing an example as an application.  相似文献   

16.
In this paper, some approximation formulae for a class of convolution type double singular integral operators depending on three parameters of the type(T_λf)(x, y) = ∫_a~b ∫_a~b f(t, s)K_λ(t-x,s-y)dsdt, x,y ∈(a,b), λ∈Λ  [0,∞),(0.1)are given. Here f belongs to the function space L_1( a,b ~2), where a,b is an arbitrary interval in R. In this paper three theorems are proved, one for existence of the operator(T_λf)(x, y) and the others for its Fatou-type pointwise convergence to f(x_0, y_0), as(x,y,λ) tends to(x_0, y_0, λ_0). In contrast to previous works, the kernel functions K_λ(u,v)don't have to be 2π-periodic, positive, even and radial. Our results improve and extend some of the previous results of [1, 6, 8, 10, 11, 13] in three dimensional frame and especially the very recent paper [15].  相似文献   

17.
We study the global in time existence of small classical solutions to the nonlinear Schrödinger equation with quadratic interactions of derivative type in two space dimensions $\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&;t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&;x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)$ where the quadratic nonlinearity has the form ${\mathcal{N}( \nabla u,\nabla v) =\sum_{k,l=1,2}\lambda _{kl} (\partial _{k}u) ( \partial _{l}v) }We study the global in time existence of small classical solutions to the nonlinear Schr?dinger equation with quadratic interactions of derivative type in two space dimensions
$\left\{{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \right.\quad\quad\quad\quad\quad\quad (0.1)$\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)  相似文献   

18.
In this paper, we study the existence of nodal solutions for the following problem:-(φ_p(x′))′= α(t)φ_p(x~+) + β(t)φ_p(x~-) + ra(t)f(x), 0 t 1,x(0) = x(1) = 0,where φ_p(s) = |s|~(p-2)s, a ∈ C([0, 1],(0, ∞)), x~+= max{x, 0}, x~-=- min{x, 0}, α(t), β(t) ∈C[0, 1]; f ∈ C(R, R), sf(s) 0 for s ≠ 0, and f_0, f_∞∈(0, ∞), where f_0 = lim_|s|→0f(s)/φ_p(s), f_∞ = lim|s|→+∞f(s)/φ_p(s).We use bifurcation techniques and the approximation of connected components to prove our main results.  相似文献   

19.
We prove the existence of positive solutions for the system$$\begin{align*}\begin{cases}-\Delta_{p} u =\lambda a(x){f(v)}{u^{-\alpha}},\qquad x\in \Omega,\\-\Delta_{q} v = \lambda b(x){g(u)}{v^{-\beta}},\qquad x\in \Omega,\\u = v =0, \qquad x\in\partial \Omega,\end{cases}\end{align*}$$where $\Delta_{r}z={\rm div}(|\nabla z|^{r-2}\nabla z)$, for $r>1$ denotes the r-Laplacian operator and $\lambda$ is a positive parameter, $\Omega$ is a bounded domain in $\mathbb{R}^{n}$, $n\geq1$ with sufficiently smooth boundary and $\alpha, \beta \in (0,1).$ Here $ a(x)$ and $ b(x)$ are $C^{1}$ sign-changingfunctions that maybe negative near the boundary and $f,g $ are $C^{1}$ nondecreasing functions, such that $f, g :\ [0,\infty)\to [0,\infty);$ $f(s)>0,$ $g(s)>0$ for $s> 0$, $\lim_{s\to\infty}g(s)=\infty$ and$$\lim_{s\to\infty}\frac{f(Mg(s)^{\frac{1}{q-1}})}{s^{p-1+\alpha}}=0,\qquad \forall M>0.$$We discuss the existence of positive weak solutions when $f$, $g$, $a(x)$ and $b(x)$ satisfy certain additional conditions. We employ the method of sub-supersolution to obtain our results.  相似文献   

20.
Let B  R~n be the unit ball centered at the origin. The authors consider the following biharmonic equation:{?~2u = λ(1 + u)~p in B,u =?u/?ν= 0 on ?B, where p n+4/ n-4and ν is the outward unit normal vector. It is well-known that there exists a λ* 0 such that the biharmonic equation has a solution for λ∈ (0, λ*) and has a unique weak solution u*with parameter λ = λ*, called the extremal solution. It is proved that u* is singular when n ≥ 13 for p large enough and satisfies u*≤ r~(-4/ (p-1)) - 1 on the unit ball, which actually solve a part of the open problem left in [D`avila, J., Flores, I., Guerra, I., Multiplicity of solutions for a fourth order equation with power-type nonlinearity, Math. Ann., 348(1), 2009, 143–193] .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号