共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this paper, the Euler–Maruyama (EM) method with random variable stepsize is studied to reproduce the almost sure stability of the true solutions of stochastic differential equations. Since the choice of the time step is based on the current state of the solution, the time variable is proved to be a stopping time. Then the semimartingale convergence theory is employed to obtain the almost sure stability of the random variable stepsize EM solution. To our best knowledge, this is the first paper to apply the random variable stepsize (with clear proof of the stopping time) to the analysis of the almost sure stability of the EM method. 相似文献
3.
4.
In this study, we develop a fourth‐order compact finite difference scheme for solving a model of energy exchanges in a generalized N‐carrier system with heat sources and Neumann boundary conditions, which extends the concept of the well‐known parabolic two‐step model for microheat transfer. By using the matrix analysis, the compact finite difference numerical scheme is shown to be unconditionally stable. The accuracy of the solution obtained by the scheme is tested by a numerical example. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010 相似文献
5.
《Applied Mathematical Modelling》2014,38(15-16):3695-3705
Fractional sub-diffusion equations have been widely used to model sub-diffusive systems. Most algorithms are designed for one-dimensional problems due to the memory effect in fractional derivative. In this paper, the numerical simulation of the 3D fractional sub-diffusion equation with a time fractional derivative of order is considered. A fractional alternating direction implicit scheme (FADIS) is proposed. We prove that FADIS is uniquely solvable, unconditionally stable and convergent in norm by the energy method. A numerical example is given to demonstrate the efficiency of FADIS. 相似文献
6.
A high order difference method for fractional sub-diffusion equations with the spatially variable coefficients under periodic boundary conditions 下载免费PDF全文
In this paper, we propose a difference scheme with global convergence order $O(\tau^{2}+h^4)$ for a class of the Caputo fractional equation. The difficulty caused by the spatially variable coefficients is successfully handled. The unique solvability, stability and convergence of the finite difference scheme are proved by use of the Fourier method. The obtained theoretical results are supported by numerical experiments. 相似文献
7.
This article is devoted to the study of high order accuracy difference methods for the Cahn-Hilliard equation.A three level linearized compact difference scheme is derived.The unique solvability and unconditional convergence of the difference solution are proved.The convergence order is O(τ 2 + h 4 ) in the maximum norm.The mass conservation and the non-increase of the total energy are also verified.Some numerical examples are given to demonstrate the theoretical results. 相似文献
8.
9.
In this paper, a compact finite difference scheme is constructed and investigated for the fourth-order time-fractional integro-differential equation with a weakly singular kernel. In the temporal direction, the Caputo derivative term is treated by means of L1 discrete formula and the Riemann–Liouville fractional integral term is discretized by the second-order convolution quadrature rule. A fully discrete compact difference scheme is constructed with the space discretization by the fourth-order compact approximation. The stability and convergence are obtained by the discrete energy method, the Cholesky decomposition and the reduced-order method. Numerical experiments are presented to verify the theoretical analysis. 相似文献
10.
In this paper, the finite difference scheme is developed for the time-space fractional diffusion equation with Dirichlet and fractional boundary conditions. The time and space fractional derivatives are considered in the senses of Caputo and Riemann-Liouville, respectively. The stability and convergence of the proposed numerical scheme are strictly proved, and the convergence order is O(τ2−α+h2). Numerical experiments are performed to confirm the accuracy and efficiency of our scheme. 相似文献
11.
Boundary value problem for p−Laplacian Caputo fractional difference equations with fractional sum boundary conditions 下载免费PDF全文
Thanin Sitthiwirattham 《Mathematical Methods in the Applied Sciences》2016,39(6):1522-1534
In this paper, we consider a discrete fractional boundary value problem of the form where 0 < α,β≤1, 1 < α + β≤2, 0 < γ≤1, , ρ is a constant, and denote the Caputo fractional differences of order α and β, respectively, is a continuous function, and ?p is the p‐Laplacian operator. The existence of at least one solution is proved by using Banach fixed point theorem and Schaefer's fixed point theorem. Some illustrative examples are also presented. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
12.
Zhi‐Zhong Sun 《Numerical Methods for Partial Differential Equations》2009,25(6):1320-1341
In this article, two recent proposed compact schemes for the heat conduction problem with Neumann boundary conditions are analyzed. The first difference scheme was proposed by Zhao, Dai, and Niu (Numer Methods Partial Differential Eq 23, (2007), 949–959). The unconditional stability and convergence are proved by the energy methods. The convergence order is O(τ2 + h2.5) in a discrete maximum norm. Numerical examples demonstrate that the convergence order of the scheme can not exceeds O(τ2 + h3). An improved compact scheme is presented, by which the approximate values at the boundary points can be obtained directly. The second scheme was given by Liao, Zhu, and Khaliq (Methods Partial Differential Eq 22, (2006), 600–616). The unconditional stability and convergence are also shown. By the way, it is reported how to avoid computing the values at the fictitious points. Some numerical examples are presented to show the theoretical results. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009 相似文献
13.
Seakweng Vong Chenyang Shi Pin Lyu 《Numerical Methods for Partial Differential Equations》2017,33(6):2141-2158
In this article, we consider two‐dimensional fractional subdiffusion equations with mixed derivatives. A high‐order compact scheme is proposed to solve the problem. We establish a sufficient condition and show that the scheme converges with fourth order in space and second order in time under this condition.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 2141–2158, 2017 相似文献
14.
15.
Guang‐Hua Gao Zhi‐Zhong Sun 《Numerical Methods for Partial Differential Equations》2013,29(5):1459-1486
This is the further work on compact finite difference schemes for heat equation with Neumann boundary conditions subsequent to the paper, [Sun, Numer Methods Partial Differential Equations (NMPDE) 25 (2009), 1320–1341]. A different compact difference scheme for the one‐dimensional linear heat equation is developed. Truncation errors of the proposed scheme are O(τ2 + h4) for interior mesh point approximation and O(τ2 + h3) for the boundary condition approximation with the uniform partition. The new obtained scheme is similar to the one given by Liao et al. (NMPDE 22 (2006), 600–616), while the major difference lies in no extension of source terms to outside the computational domain any longer. Compared with ones obtained by Zhao et al. (NMPDE 23 (2007), 949–959) and Dai (NMPDE 27 (2011), 436–446), numerical solutions at all mesh points including two boundary points are computed in our new scheme. The significant advantage of this work is to provide a rigorous analysis of convergence order for the obtained compact difference scheme using discrete energy method. The global accuracy is O(τ2 + h4) in discrete maximum norm, although the spatial approximation order at the Neumann boundary is one lower than that for interior mesh points. The analytical techniques are important and can be successfully used to solve the open problem presented by Sun (NMPDE 25 (2009), 1320–1341), where analyzed theoretical convergence order of the scheme by Liao et al. (NMPDE 22 (2006), 600–616) is only O(τ2 + h3.5) while the numerical accuracy is O(τ2 + h4), and convergence order of theoretical analysis for the scheme by Zhao et al. (NMPDE 23 (2007), 949–959) is O(τ2 + h2.5), while the actual numerical accuracy is O(τ2 + h3). Following the procedure used for the new obtained difference scheme in this work, convergence orders of these two schemes can be proved rigorously to be O(τ2 + h4) and O(τ2 + h3), respectively. Meanwhile, extension to the case involving the nonlinear reaction term is also discussed, and the global convergence order O(τ2 + h4) is proved. A compact ADI difference scheme for solving two‐dimensional case is derived. Finally, several examples are given to demonstrate the numerical accuracy of new obtained compact difference schemes. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013 相似文献
16.
Xuan-ru Lu Guang-Hua Gao Zhi-Zhong Sun 《Numerical Methods for Partial Differential Equations》2023,39(1):447-480
In this paper, the fourth-order parabolic equations with different boundary value conditions are studied. Six kinds of boundary value conditions are proposed. Several numerical differential formulae for the fourth-order derivative are established by the quartic interpolation polynomials and their truncation errors are given with the aid of the Taylor expansion with the integral remainders. Effective difference schemes are presented for the third Dirichlet boundary value problem, the first Neumann boundary value problem and the third Neumann boundary value problem, respectively. Some new embedding inequalities on the discrete function spaces are presented and proved. With the method of energy analysis, the unique solvability, unconditional stability and unconditional convergence of the difference schemes are proved. The convergence orders of derived difference schemes are all O(τ2 + h2) in appropriate norms. Finally, some numerical examples are provided to confirm the theoretical results. 相似文献
17.
A compact ADI scheme for the two dimensional time fractional diffusion‐wave equation in polar coordinates 下载免费PDF全文
In this article, we consider finite difference schemes for two dimensional time fractional diffusion‐wave equations on an annular domain. The problem is formulated in polar coordinates and, therefore, has variable coefficients. A compact alternating direction implicit scheme with accuracy order is derived, where τ, h1, h2 are the temporal and spatial step sizes, respectively. The stability and convergence of the proposed scheme are studied using its matrix form by the energy method. Numerical experiments are presented to support the theoretical results. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1692–1712, 2015 相似文献
18.
Hong Sun Zhi‐Zhong Sun Guang‐Hua Gao 《Numerical Methods for Partial Differential Equations》2016,32(3):970-1001
In this article, motivated by Alikhanov's new work (Alikhanov, J Comput Phys 280 (2015), 424–438), some difference schemes are proposed for both one‐dimensional and two‐dimensional time‐fractional wave equations. The obtained schemes can achieve second‐order numerical accuracy both in time and in space. The unconditional convergence and stability of these schemes in the discrete H1‐norm are proved by the discrete energy method. The spatial compact difference schemes with the results on the convergence and stability are also presented. In addition, the three‐dimensional problem is briefly mentioned. Numerical examples illustrate the efficiency of the proposed schemes. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 970–1001, 2016 相似文献
19.
In this article, a high‐order finite difference scheme for a kind of nonlinear fractional Klein–Gordon equation is derived. The time fractional derivative is described in the Caputo sense. The solvability of the difference system is discussed by the Leray–Schauder fixed point theorem, while the stability and L∞ convergence of the finite difference scheme are proved by the energy method. Numerical examples are provided to demonstrate the theoretical results. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 706–722, 2015 相似文献
20.
Akbar Mohebbi Mostafa Abbaszadeh Mehdi Dehghan 《Numerical Methods for Partial Differential Equations》2014,30(4):1234-1253
In this article, we apply a high‐order difference scheme for the solution of some time fractional partial differential equations (PDEs). The time fractional Cattaneo equation and the linear time fractional Klein–Gordon and dissipative Klein–Gordon equations will be investigated. The time fractional derivative which has been described in the Caputo's sense is approximated by a scheme of order , and the space derivative is discretized with a fourth‐order compact procedure. We will prove the solvability of the proposed method by coefficient matrix property and the unconditional stability and ‐convergence with the energy method. Numerical examples demonstrate the theoretical results and the high accuracy of the proposed scheme. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1234–1253, 2014 相似文献