首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoactive nanostructured micellar films were prepared from the amphiphilic copolymer poly(sodium styrenesulfonate- stat-2-vinylnaphthalene) (PSSS- stat-VN) and cationic polyelectrolyte poly(diallyldimethylammonium chloride) (PDADMAC) or poly(allylamine hydrochloride) (PAH) on quartz and silicon substrates via layer-by-layer (LbL) electrostatic self-assembly. The macromolecules of this amphiphilic copolymer adopt a coiled micellar conformation in aqueous solution that is preserved in the films as evidenced by atomic force microscopy (AFM) and spectroscopic studies. The hydrophobic domains present in the film can serve as host sites for various organic molecules. The probe molecules reside in those isolated nanosize domains. Their aggregation and quenching of their emission is eliminated. The experiments showed a regular growth of multilayer thickness and the content of solubilized compounds in the films. Thus, a defined amount of the hydrophobic compounds of interest may be introduced into these water-processable polymeric films. Some stratification of the films was induced by the presence of stiff nanoparticle-like micelles. That makes these films an important new material for studies of photoinduced energy and electron transfer.  相似文献   

2.
Temperature- and pH-sensitive poly(N-isopropylacrylamide)?Cco-acrylic acid (pNIPAm-co-AAc) microgels were deposited on glass substrates coated with polyelectrolyte multilayers composed of the polycation poly(allylamine hydrochloride) (PAH) and the polyanion poly(sodium 4-styrenesulfonate) (PSS). The microgel density and structure of the resultant films were investigated as a function of: (1) the number of PAH/PSS layers (layer thickness); (2) the charge on the outer layer of the polyelectrolyte multilayer film; and (3) the pH of microgel deposition solution. The resultant films were studied by differential interference contrast optical microscopy, atomic force microscopy, and scanning electron microscopy. It was found that the coverage of the microgels on the surface was a complex function of the pH of the deposition solution, the charge on the outer layer of the polyelectrolyte thin film and the PAH/PSS layer thickness; although it appears that microgel charge plays the biggest role in determining the resultant surface coverage.  相似文献   

3.
As many properties of polymer thin films critically depend on their thickness, a convenient and cost‐effective method for precise measurement of film thickness in a wide range is highly desirable. Here, we present a method which enables polymer film thickness, ranging from nanometer to micrometer scale, to be facilely determined by measuring the height of an artificially created film step on smooth substrates with atomic force microscopy (AFM). Three polymeric films (polystyrene, poly(methyl methacrylate) and poly(styrene–ethylene/butylene–styrene) films), spin‐coated on either mica or quartz substrate with thickness ranging from 5.7 nm to 4.4 µm, were employed to demonstrate the procedure and feasibility of our method. The proposed method is particularly suitable for thicker polymer films, thus complementing the traditional AFM ‘tip‐scratch’ method which is generally limited to polymer films of no more than 100 nm thickness. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Temperature-sensitive hydrogel layers on silicon (Si) substrates were synthesized by electron beam irradiation of spin-coated poly(vinyl methyl ether) (PVME) films. The influences of the used solvent, the polymer concentration, and the spinning velocity on the homogeneity and the thickness of the PVME film were investigated. In the range of concentration c(p) = 1-15 wt% PVME in ethanol solution, homogeneous films with a thickness between d = 50 nm and 1.7 mum were obtained. The films were cross-linked by electron beam irradiation under inert atmosphere and analyzed by sol-gel-analysis. The results were compared with bulkgels formed by electron beam irradiation of PVME in the dry state. The film topography was analyzed by high-resolution field emission scanning electron microscopy and atomic force microscopy. An islandlike structure in the dry, swollen, and shrunken state of the hydrogel films was observed.  相似文献   

5.
Metal-enhanced fluorescence (MEF) of quantum dots (QDs) and its potential application in microarray-based immunoassays was investigated using silver nanoparticles (AgNPs) prepared by the in situ photoreduction of Ag+ inside a multilayer film consisting of poly(ethyleneimine) (PEI) and hyaluronic acid (HA). UV–Vis spectroscopy, X-ray diffraction, atomic force microscopy, scanning electron microscopy, and transmission electron microscopy confirmed the formation of well-dispersed AgNPs within the multilayer films, the thickness and the amount of which depended on the number of HA layers. Using AgNPs-containing hybrid multilayered films, it was possible to observe the MEF effect of adsorbed QDs, which could be tuned by the thickness of interlayer spacer film prepared of the layer-by-layer assembly of PEI and poly(styrene sulfonate). When the MEF-inducing hybrid film was used as a platform for immunoassay, a significant improvement in the fluorescence signal and sensitivity of the biosensing were observed in the presence of AgNPs in comparison with films that did not contain the nanoparticles.  相似文献   

6.
The trilayer core–shell polysilsesquioxane/polyacrylate/poly(fluorinated acrylate) (PSQ/PA/PFA) hybrid latex particles are successfully prepared, using functional PSQ latex particles with reactive methacryloxypropyl groups synthesized by the hydrolysis and polycondensation of (3-methacryloxypropyl)trimethoxysilane in the presence of a reactive emulsifier as seeds. Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and dynamic light scattering (DLS) confirm that the resultant hybrid latex particles have evident trilayer core–shell structure and a narrow size distribution. The Fourier transform infrared (FTIR) spectra show that fluorinated acrylate monomers are effectively involved in the emulsion copolymerization and formed the fluorine-containing hybrid latex particles. XPS analysis of the obtained hybrid latex film reveals that the intensity of fluorine signal in the film–air interface is higher than that in the film–glass interface. In addition, compared with pure polyacrylate latex film, the obtained fluorine-containing hybrid film shows higher hydrophobicity and thermal stability, and lower surface free energy.  相似文献   

7.
Thin films of different polymers - poly(styrene) (PS), poly(methylmethacrylate) (PMMA), poly(vinylcarbazole) (PVCz), poly(vinylchloride) (PVC) and poly(vinylidene fluoride) (PVDF) - were deposited by spin-coating or by vapor deposition. On these polymers, thin films of (hexadecafluorophthalocyaninato)-oxovanadium (F16PcVO) were prepared by physical vapor deposition. The growth of these films was monitored in situ by optical spectroscopy. The optical absorbance spectra were analyzed based on the coupling of transition dipoles to obtain information on the intermolecular arrangement of chromophores in the films. In all of these samples, the molecules are oriented with their molecular plane preferentially perpendicular to the substrate surface. This gives the desired overlap of the π-systems for electric conductance parallel to the substrate. Differences in the interactions were detected when deposition temperatures below or above the glass transition temperature of a given polymer were compared. The morphology of the polymer films and the deposited semiconductors were investigated by atomic force microscopy and scanning electron microscopy. The influence of the chosen substrate on the film structure is determined. The optical and electric properties of the films could thereby be influenced and the applicability of such films as active layers in organic thin film transistors is discussed.  相似文献   

8.
We report the influence of polyelectrolyte (PE) multilayer films prepared from poly(styrene sulfonate)-poly(acrylic acid) (PSS-PAA) blends, deposited in alternation with poly(allylamine hydrochloride) (PAH), on film wettability and the adsorption behavior of the protein immunoglobulin G (IgG). Variations in the chemical composition of the PAH/(PSS-PAA) multilayer films, controlled by the PSS/PAA blend ratio in the dipping solutions, were used to systematically control film thickness, surface morphology, surface wettability, and IgG adsorption. Spectroscopic ellipsometry measurements indicate that increasing the PSS content in the blend solutions results in a systematic decrease in film thickness. Increasing the PSS content in the blend solutions also leads to a reduction in film surface roughness (as measured by atomic force microscopy), with a corresponding increase in surface hydrophobicity. Advancing contact angles (theta) range from 7 degrees for PAH/PAA films through to 53 degrees for PAH/PSS films. X-ray photoelectron spectroscopy measurements indicate that the increase in film hydrophobicity is due to an increase in PSS concentration at the film surface. In addition, the influence of added electrolyte in the PE solutions was investigated. Adsorption from PE solutions containing added salt favors PSS adsorption and results in more hydrophobic films. The amount of IgG adsorbed on the multilayer films systematically increased on films assembled from blends with increasing PSS content, suggesting strong interactions between PSS in the multilayer films and IgG. Hence, multilayer films prepared from blended PE solutions can be used to tune film thickness and composition, as well as wetting and protein adsorption characteristics.  相似文献   

9.
用匀胶机通过溶液铸膜方法在硅片和铝箔基板上分别制备具有不同厚度的聚(ε-己内酯)(PCL)薄膜. 通过原子力显微镜(AFM)和偏光衰减全反射傅里叶红外光谱(ATR-FTIR)对薄膜中PCL的结晶形貌、 片晶生长方式及分子链取向进行了研究. AFM结果表明, 在200 nm或更厚的薄膜中, PCL主要以侧立(edge-on)片晶的方式生长; 对于厚度小于200 nm的薄膜, PCL片晶更倾向于以平躺(flat-on)的方式生长. 这种片晶生长方式的改变在硅片和铝箔基板上都表现出同样的倾向. 此外, 在15 nm或更薄的薄膜中, PCL结晶由通常的球晶结构变为树枝状晶体. 偏光ATR-FTIR结果表明, 当膜厚小于200 nm时, 薄膜结晶中PCL分子链沿垂直于基板表面方向取向, 并且膜越薄, 取向程度越高, 与AFM的观测结果一致.  相似文献   

10.
We demonstrate that the wetting behavior of a thin liquid film, poly(4-bromostyrene) (PBrS), on top of a solid substrate may be effectively controlled with the insertion of a secondary liquid film, poly(4-vinyl pyridine) (P4VP), underneath the primary film. This secondary film remains stable under all conditions, and can be viewed as an extension of the substrate itself. On the basis of results from X-ray standing waves generated via total external reflection from an X-ray mirror, time-of-flight secondary ion mass spectroscopy, optical microscopy, and atomic force microscopy, we construct the full Helmholtz free energy versus PBrS thickness curve using existing theories that account for both long- and short-range interactions. The form of the free energy curve, which contains an inflection point and an absolute minimum at a nonzero PBrS thickness, accurately reflects our observation that thick PBrS films undergo autophobic dewetting on top of the stable P4VP, while sufficiently thin PBrS films remain stable. The thickness of the autophobic wetting layer is controlled by the range of the repulsive interaction between the film and the substrate, and is found to be ~4 nm for the PBrS/P4VP interface.  相似文献   

11.
A write-read-erasable memory device was fabricated on layer-by-layer (LbL) ultrathin films prepared from poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT-PSS) and poly(diallyldimethylammonium chloride) (PDDA). By use of current-sensing atomic force microscopy (CS-AFM), nanopatterns were formed by applying a bias voltage between a conductive tip (Pt-coated Si3N4 cantilever) in contact with the polymer film and gold substrate. The dependence of the nanopatterns on film thickness, applied bias, and writing speed was studied. Moreover, the height of the patterns was 3-5 times higher than the original thickness of the films, opening the possibility for three-dimensional nanopatterning. The ability of the patterns to be erased after nanowriting was also investigated. By comparing the I-V characteristics under ambient conditions and under N2 environment, a joule-heating activated, water meniscus-assisted anion doping mechanism for the nanopatterning process was determined. Write-read-erase memory device capability was demonstrated on the nanopatterns.  相似文献   

12.
Ultrathin organic films of sucrose octaacetate (SOA) were deposited on 12.5 cm diameter silicon wafer substrates using high-pressure free meniscus coating (hFMC) with liquid CO2 (l-CO2) as a coating solvent. The dry film thickness across the wafer and the morphology of deposited films were characterized as a function of coating conditions-withdrawal velocity, solution concentration, and evaporation driving force (deltaP). When no evaporation driving force was applied (deltaP = 0), highly uniform films were deposited with thickness in the range of 8-105 angstroms over the entire concentration range (3-11 wt%). Uniform films were also obtained at low concentrations (3-5 wt%) with a low evaporation driving force (deltaP = 0.0138 MPa). However, films deposited at medium to high concentrations (7-11 wt%) were thicker (110-570 angstroms) and less uniform, with larger nonuniformities at higher applied evaporation driving forces. Optical microscopy and atomic force microscopy (AFM) were used to characterize film morphology including drying defects and film roughness. Films deposited without evaporation had no apparent drying defects and very low root-mean-square (RMS) roughness (1.4-3.8 angstroms). Spinodal-like dewetting morphologies including holes with diameters in the range of 100-300 nm, and surface undulations were observed in films deposited at medium concentration (7 wt%) and low deltaP (0.0138-0.0276 MPa). At higher concentrations and higher evaporative driving forces, spinodal-like dewetting morphologies disappeared but concentric ring defect structures were observed with diameters in the range 20-125 microm. The film thickness and morphology of SOA films deposited from 1-CO2 hFMC were compared to those deposited from toluene and acetone under normal dip coating. Films deposited from l-CO2 hFMC were much thinner, more uniform, and exhibited much fewer drying defects and lower RMS roughness.  相似文献   

13.
Polyaniline (PANI) is one of the most promising candidates for flexible organic thermoelectric (TE) applications owing to its relatively low cost and high stability. Herein, the self‐assembled supramolecule (SAS) (3,6‐dioctyldecyloxy‐1,4‐benzenedicarboxylic acid) was used as an additive and was introduced into PANI films as a template. Raman spectroscopy, X‐ray diffraction, and conductive atomic force microscopy analyses demonstrated that the highly ordered chain structure of PANI was achieved by chemical interactions between PANI and the SAS. Moreover, the ordered regions in the PANI‐SAS film increased with a decrease in the film thickness. Consequently, the TE properties of PANI‐SAS films were not only much higher than those of PANI films, but they also increased with a decrease in film thickness. The maximum TE power factor of the PANI‐SAS film reached 31 μW m?1 K?2, which is approximately six times higher than the power factor of a PANI film with a similar thickness. This work offers a promising way to prepare PANI thin films with enhanced TE properties.  相似文献   

14.
PET表面锐钛矿-板钛矿相TiO2薄膜的制备及表征   总被引:1,自引:0,他引:1  
利用改进的溶胶-凝胶法在经表面改性的PET(聚对苯二甲酸乙二醇酯)表面制备得到TiO2薄膜. 利用X射线衍射(XRD)、原子力显微镜(AFM)、UV-Vis 透光率曲线、接触角测试仪等测试手段对TiO2样品的性能进行表征.结果表明, PET表面过渡层的引入有效地改善了有机基底与无机薄膜之间的界面相容性, 在其表面形成透明、均一、附着力良好且具有光催化活性的TiO2薄膜.通过控制实验过程, 在低温下成功制备了不同锐钛矿/板钛矿比的TiO2薄膜,同时发现适量板钛矿相的存在能有效提高薄膜的光致亲水性.  相似文献   

15.
Hydrogen-bonded polymer complex films with the thickness ranging from 50 nm to 2400 nm were prepared by layer-by-layer (LbL) assembly of poly(2-ethyl-2-oxazoline) (PEOX) and poly(acrylic acid) (PAA). The dewetting behavior of PEOX/PAA films under hydrothermal condition was investigated. It was found that the dewetting occurred at solid-liquid interface, and the typical morphologies such as holes, irregular cellular structure, and droplets were observed. Atomic force microscopy (AFM) revealed the initial rupture of the film. Microscopic Raman and infrared (IR) imaging demonstrated that the PEOX and PAA chains remained association during the dewetting process.  相似文献   

16.
In order to elaborate alternate layer-by-layer assembly as a means to prepare ultrathin films, details of conventional polyion assemblies have been quantitatively analyzed by quartz crystal microbalance (QCM) technique with the aid of scanning electron microscopy (SEM) and atomic force microscopy (AFM). The alternate adsorption of poly(styrenesulfonate) (PSS) and poly(allylamine) (PAM) onto oppositely-charged surfaces displayed the pseudo first-order kinetics and was saturated within 10–20 min at pH 3 and 22°C. It was revealed that drying at every step increased the thickness of adsorbed films due to enhanced surface roughness of the films. Therefore, frequent drying is not profitable for preparing films in a good quality. Non-contact AFM observation revealed that drying of the film with nitrogen stream, forced polymer chains to align to one direction with increasing surface roughness. In contrast, water washing between the consecutive adsorptions was effective for successful alternate adsorption. About 10% of an adsorbed polyion layer was removed by 5-min water washing probably due to removal of the loosely-attached materials.  相似文献   

17.
Thin films (20-150 nm thickness) of poly(o-anthranilic acid) with various doping levels were prepared on silicon substrates with deposited indium tin oxide, and their topography and current-voltage (I-V) characteristics were quantitatively investigated using current-sensing atomic force microscopy with a platinum-coated tip. The films were found to have a surface morphology like that of orange peel, with a periodic modulation and a surface roughness. The films exhibited nonuniform current flows and I-V characteristics that depended on the doping level as well as on the film thickness. Films with a high doping level were found to exhibit Zener diode switching behavior, whereas the films with a very low doping level (or that were dedoped) exhibited no current flow at all, and so are insulators. Interestingly, self-doped films (which are at an intermediate doping level) were found to have a novel electrical bistability, i.e., a switching characteristic like that of Schottky diodes, and increasingly insulating characteristics as the film thickness was increased. The films with thickness < or =62 nm, which exhibited this novel and stable electrical bistability, can potentially be used in the fabrication of high-density, stable, high-performance digital nonvolatile memory devices based only on transistors. The measured current images and I-V characteristics indicate that the electrical switching and bistability of the films are governed by local filament formation and charge traps.  相似文献   

18.
Multilayer films of tungstophosphate anion (P2W18) and poly(allylamine hydrochloride) (PAH) were fabricated on quartz and ITO substrates by layer-by-layer self-assembly method. These films were characterized by UV–vis spectroscopy, cyclic voltammetry (CV), chronoamperometric (CA), chronocoulometry (CC) and atomic force microscopy (AFM). The effects of film structure on multilayer electrochromic properties were investigated. The electrochromic responses of the composite films were related to the surface coverage of anion and multilayer thickness. It was found that higher concentration of polycation and anion, or adding salt to the polycation solution used for multilayer film preparation led to thicker and denser film structure which improved optical contrast and coloration efficiency whereas prolonged response time.  相似文献   

19.
"ZnO piezoelectric thin films were prepared on crystal substrate Si(111) by sol-gel technology, then characterized by scanning electron microscopy, X-ray diffraction and atomic force microscopy (AFM). The ZnO films characterized by X-ray diffraction are highly oriented in (002) direction with the growing of the film thickness. The morphologies, roughness and grain size of ZnO film investigated by AFM show that roughness and grain size of ZnO piezoelectric films decrease with the increase of the film thickness. The roughness dimension is 2.188-0.914 nm. The piezoelectric coeocient d33 was investigated with a piezo-response force microscope (PFM). The results show that the piezoelectric coeocient increases with the increase of thickness and (002) orientation. When the force reference is close to surface roughness of the films, the piezoelectric coefficient measured is inaccurate and fluctuates in a large range, but when the force reference is big, the piezoelectric coeocient d33 changes little and ultimately keeps constant at a low frequency."  相似文献   

20.
A new coating process is described (deposition from two immiscible supercritical phases, or DISP) in which a solution of supercritical carbon dioxide (scCO2) with a desired solute is displaced by supercritical helium (scHe). After depressurization, the solute is deposited on substrates initially submerged in the coating solvent. Micron-sized particles and thin films of sucrose octaacetate (SOA) were formed on silicon wafer substrate coupons from DISP at relatively low temperatures and pressures (< or = 6500 psi and < or = 60 degrees C). The particle size, film thickness, and morphology of SOA were characterized as a function of coating conditions-solution concentrations, withdrawal velocities, and pressures. Particles in the range of 1-14 microm in diameter were deposited at low solute concentrations (< or = 0.2 wt % at 4500 psi), whereas films in the range of 0.1-0.5 microm in thickness were deposited at higher solute concentrations (> or = 1.5 wt % at 4500 psi). Particle sizes decreased with increasing displacement velocity and increasing pressure. Estimates of characteristic times for diffusion and nucleation indicate that DISP is a diffusion-limited process. Optical microscopy and atomic force microscopy (AFM) were used to characterize film morphology, including defect formations and film roughness. Highly uniform films with low root-mean-square (RMS) roughness (approximately 10 angstroms) were obtained at a low displacement velocity of 0.0035 cm/s, while ring-like defect structures were observed in films deposited at a higher displacement velocity of 0.035 cm/s. The film thickness and morphology of the films deposited from DISP were compared with films from normal dip coating with typical organic solvents (acetone and toluene). Films deposited from scCO2 by DISP were much thicker, more uniform, and exhibited much fewer drying defects and lower RMS roughness compared with films from the organic solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号