首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A theoretical study is presented in this paper to investigate the conjugate heat transfer across a vertical finite wall separating two forced and free convection flows at different temperatures. It is assumed that the heat conduction in the wall is only in the transversal direction. We also assume that countercurrent boundary layers are formed on the both sides of the wall. The governing equations of this problem and their corresponding boundary conditions are all cast into a dimensionless form by using a non-similarity transformation. These resulting equations, which are singular at the points ξc=0 and 1, are solved numerically using a very efficient singular perturbation method. The effects of the resistance parameters and of the Prandtl numbers on heat transfer characteristics are investigated and presented in a table and ten figures. Received on 8 April 1998  相似文献   

2.
Heat and mass transfer at a vertical surface is examined in the case of combined free and forced convection. The boundary layer equations, transformed to ordinary differential equations, contain a parameter that determines the effect of free convection on the forced motion. Criteria are offered for differentiating the free-convection, forced-convection, and combined regimes.Notation x, y coordinates - u, v velocity components - g acceleration of gravity - T temperature - kinematic viscosity - coefficient of thermal expansion - a thermal diffusivity - 1 partial vapor density - D diffusion coefficient - W2 mass velocity of air - independent variable - w shear stress at wall - thermal conductivity - r latent heat of phase transition - , dimensionless temperature and partial vapor density - m* the complex (m 1m 1w )/(1–m(1w ) - cp specific heat at constant pressure - G Grashof number - R Reynolds number - P Prandtl number - S Schmidt number  相似文献   

3.
The influence of free convection on forced convection heat transfer becomes important in laminar flows. Numerical methods have been applied for a study of mixed convection in vertical tubes for the following conditions: temperature-dependent fluid density, constant wall temperature and parabolic profile of axial velocity at the tube entrance. Both cases: heating and cooling have been considered.  相似文献   

4.
Effects of a transversely applied magnetic field on the forced and free convective flow of an electrically conducting fluid past a vertical semi-infinite plate, on taking into account dissipative heat and stress work, have been presented. Without magnetic field, it has been discussed by the authors [1] in an earlier paper. The effects of Gr (Grashof number, Gr>0 cooling of the plate by free convection currents, Gr<0 heating of the plate by free convection currents), Pr (Prandtl number), F (Froude number) and M2 (the magnetic field parameter) are discussed. It is observed that reverse type of flow of air exists near the plate when Gr<0.
Gemischte erzwungene und freie Konvektions-MHD-Strömung an einer halbunendlichen senkrechten Platte
Zusammenfassung Die Wirkung eines transversalen Magnetfeldes auf die erzwungene und freie Konvektion einer elektrisch leitenden Flüssigkeit an einer halbunendlichen senkrechten Platte wurde unter Berücksichtigung der Dissipationswärme und der Kompressionsarbeit mitgeteilt. Das Problem wurde ohne Magnetfeld schon früher [1] behandelt. Diskutiert wurde die Wirkung der Grashof-Zahl Gr (Gr>0 Kühlung der Platte durch freie Konvektion), der Prandtl-Zahl Pr, der Froude-Zahl F und des magnetischen Feldparameters M2. Bei Gr<0 wird Umkehr strömung in Plattennähe betrachtet.
  相似文献   

5.
6.
An analysis is made for the conjugate heat transfer problem of natural convection on one side of a vertical wall and forced convection on the other side. The natural convection mode is treated analytically by employing the Oseen linearization approach developed by Gill. The forced convection boundary layer is analyzed on the basis of the integral technique. The two solutions are matched on the separating wall so as to satisfy the continuity of heat flux between the two fluids. The analysis shows that the complexion of this two-fluid problem is governed by a dimensionless conjugate parameter, R, which relates the heat transfer effectiveness of forced convection mode to that of free convection mode. The boundary conditions at the wall are not prescribed in the analysis in advance, rather, determined among the results. The heat transfer and flow characteristics in the two counter-flowing boundary layers are presented graphically. Heat transfer results of engineering importance are determined as a function of the conjugation parameter. Received on 19 August 1998  相似文献   

7.
Boundary layer solutions are presented to study the effects of buoyancy on forced convection in an axisymmetric stagnation flow over a vertical cylinder with arbitrary surface heat flux variations. Numerical solutions are given for the governing momentum and energy equations. Two flow regions, namely, the buoyancy-assisted and buoyancy-opposed cases are analyzed. It is observed that the wall shear stress and surface heat transfer rate increase or decrease with the buoyancy force parameter depending upon the flow regime being buoyancy-assisted or buoyancy-opposed.  相似文献   

8.
The effects of axial heat conduction in the solid walls of microchannels of circular cross-sections are analyzed here. A systematic approach is adopted, with the aim of pointing out the influence of geometrical parameters and of solid wall thermal conductivity on microchannel heat transfer. The reliability of a commonly adopted criterium, based on the so-called axial conduction number, to assess the relevance of axial heat conduction is also discussed. Numerical simulations concern the simultaneously developing laminar flow of a constant property fluid in microchannels of different length, wall thickness and wall material, heated with a uniform heat flux at the outer surface, for different values of the Reynolds number. Moreover, since often in experimental tests the two end sections of the microchannel wall are not perfectly insulated, the effects of heat losses through these sections are also considered. A hybrid finite element procedure, which implies the step-by-step solution of the parabolized momentum equations in the fluid domain, followed by the solution of the energy equation in the entire domain, corresponding to both the solid and the fluid parts, is used for the numerical simulations.  相似文献   

9.
Using the two-velocity, two-temperature model of a continuous medium, the viscousgravitational flow of a mixture of incompressible liquid and solid particles in a vertical round tube is considered. The free-convection equations are written down on the basis of the general equation of motion and the energy equation of a two-phase medium [1, 2]. Using a finite Hankel integral transformation, a solution is constructed for the case of a linear wall-temperature distribution along the tube. The results of some practical calculations of the velocity and temperature fields over the cross section of the tube are presented, together with the dimensionless heat-transfer coefficient expressed as a function of the Rayleigh number and phase concentration. Here it is assumed that the dynamic and thermal-interaction coefficients between the phases correspond to the Stokes mode of flow for each particle, as a result of which the velocity and thermal phase lag is very small [3].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 132–136, July–August, 1975.  相似文献   

10.
We give the results of experimental and theoretical investigations of the stability of a laminar flow of liquid in a vertical layer. The experimental investigations qualitatively confirm the theoretical solutions and indicate the existence of various kinds of instability.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 170–174, September–October, 1971.  相似文献   

11.
The effect of mixed convection flow on the shape of the frozen crust in a cooled vertical channel was investigated numerically. For the prediction of the ice-layer thickness a simple numerical model which is based on the boundary layer equations was used. It can be seen that in case of assisting mixed convection flow the heat transfer at the solid crust increases because of inreasing velocity near the solid-liquid interface. On the other hand this increase of the velocity near the solid-liquid interface can lead to flow separation in the core region of the channel because of continuity of mass. By comparing the numerically obtained results for aiding mixed flow with measurements of Campbell and Incropera [10] good agreement can be observed. In case of opposing mixed flow it can be shown that flow separation might occur near the solid-liquid interface. This can result in a wave-like structure of the ice-layer.  相似文献   

12.
An investigation which includes the simultaneous effects of viscous dissipation and combined free and forced laminar non-Newtonian convection is presented. The problem under consideration is that of fully developed upflow in a vertical, circular tube which is heated with a constant wall heat flux. All properties are assumed to be constants in the analysis except for a temperature dependent density in the body force term which generates the free convection effects. The coupled continuity, momentum, and energy equations are solved using a finite difference technique. Numerical solutions are presented as a function of the parameters of the problem-flow behavior index n, Grashof number over Reynolds number ratio Gr/Re, and the Eckert number-Prandtl number product E Pr. The results show that heating due to viscous dissipation distorts the velocity profile, increases the friction factor, and decreases the Nusselt number.  相似文献   

13.
A numerical study of the steady conjugate free convection over a vertical slender, hollow circular cylinder with the inner surface at a constant temperature and embedded in a porous medium is reported. The governing boundary layer equations for the fluid-saturated porous medium over the cylinder along with the one-dimensional heat conduction equation for the cylinder are cast into dimensionless form, by using a non-similarity transformation. The resulting non-similarity equations with their corresponding boundary conditions are solved by using the Keller box method. Emphasis is placed on the effects caused by the wall conduction parameter, p, and calculations have covered a wide range of this parameter. Heat transfer results including the temperature profiles, the interface temperature profiles and the local Nusselt number are presented. Received on 17 November 1997  相似文献   

14.
Conjugate free convection along a vertical cylindrical fin in a non-Newtonian fluid-saturated porous medium has been investigated theoretically. The boundary layer equations based on the power lay model appropriate for the Darcy flows are solved numerically exploiting a very efficient finite difference method. Effects of the power-law index, conjugate convection-conduction parameter and the surface curvature parameter on the fin temperature distribution, local heat transfer-coefficient and local heat flux are studied and presented in graphical and tabular form.  相似文献   

15.
A. Ishak  R. Nazar  I. Pop 《Meccanica》2006,41(5):509-518
An analysis is made for the steady mixed convection boundary layer flow near the two-dimensional stagnation-point flow of an incompressible viscous fluid over a stretching vertical sheet in its own plane. The stretching velocity and the surface temperature are assumed to vary linearly with the distance from the stagnation-point. Two equal and opposite forces are impulsively applied along the x-axis so that the wall is stretched, keeping the origin fixed in a viscous fluid of constant ambient temperature. The transformed ordinary differential equations are solved numerically for some values of the parameters involved using a very efficient numerical scheme known as the Keller-box method. The features of the flow and heat transfer characteristics are analyzed and discussed in detail. Both cases of assisting and opposing flows are considered. It is observed that, for assisting flow, both the skin friction coefficient and the local Nusselt number increase as the buoyancy parameter increases, while only the local Nusselt number increases but the skin friction coefficient decreases as the Prandtl number increases. For opposing flow, both the skin friction coefficient and the local Nusselt number decrease as the buoyancy parameter increases, but both increase as Pr increases. Comparison with known results is excellent.  相似文献   

16.
The problem of free convection and mass transfer near a vertical wall is studied for the cases where the motion is described by the classical Oberbeck-Boussinesq model and the model of microconvection. In both cases, boundary layers are developed at high Schmidt numbers. Formulas for Nusselt (local and overall) numbers are obtained by solving the relevant problems for these layers. Initial asymptotic forms are also considered. Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 3, pp. 92–100, May–June, 2000.  相似文献   

17.
Analysis of combined free and forced convection through vertical noncircular ducts is carried out using a variational technique. Fully developed flow with uniform axial heat input and uniform peripheral heat flux is assumed. All fluid properties are considered invariant with temperature except the variation of density in the buoyancy term of the equation of motion. The condition of uniform peripheral heat flux is utilized in deriving the variational expression. This procedure releases the thermal boundary condition from satisfying exactly the condition at the wall. A finite-difference procedure is carried out. For pure forced convection case, a particularly simple variational expression is presented. Nusselt numbers for combined free and forced convection are computed for rectangular, rhombic and elliptical ducts. An exact solution is presented for laminar forced convection through elliptic ducts. Variational results are in agreement with this exact solution. The present results are compared with those in the published literature wherever possible, and good agreement is obtained.  相似文献   

18.
S. Das  B. C. Sarkar  R. N. Jana 《Meccanica》2013,48(6):1387-1398
Effects of Hall current on MHD free convection boundary layer flow of a viscous incompressible electrically conducting fluid past a heated vertical flat plate of finite dimension in the presence of a uniform transverse magnetic field have been studied. An exact solution of the governing equations describing the flow has been obtained. The velocity field, induced magnetic field and bulk temperature distributions in the boundary layer flow have been discussed. It is found that the velocity components increase with an increase in Hall parameter. It is noticed that the induced magnetic field components are radically influenced by the Hall parameter. It is also found that the magnitude of bulk temperature in the x-direction decreases with an increase in either Hall parameter or magnetic parameter. On the other hand, the magnitude of the bulk temperature in the z-direction increases with an increase in Hall parameter whereas it decreases with an increase in magnetic parameter.  相似文献   

19.
20.
Viscous dissipation effects in the problem of a fully-developed combined free and forced convection flow between two symmetrically and asymmetrically heated vertical parallel walls filled with a porous medium is analyzed. The equation of motion contains the modified Rayleigh number for a porous medium and the small-order viscous dissipation parameter. Particular attention is given to the solutions near the critical Rayleigh numbers at which infinite flow rates are predicted. Information concerning the multiplicity of solutions at critical Rayleigh numbers is also deduced from perturbation solutions of the governing equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号