共查询到20条相似文献,搜索用时 78 毫秒
1.
《数学的实践与认识》2015,(17)
中国出口贸易关系持续性问题一直备受各界学者关注.基于生存分析方法研究左截断右删失数据下Weibull分布的参数估计,并对2003年至2015年中国大陆出口澳门农产品的贸易持续时间进行实证分析,模型拟合效果良好.结果表明中国大陆与澳门贸易失败的概率是逐年递减的,具有负时间依存性.未来应考虑如何跨越门槛值,以延长中国大陆出口贸易关系的持续时间. 相似文献
2.
在左截断右删失数据下,我们基于乘积限估计给出了分位密度估计, 获得了分位密度估计及其导数的重对数律。 相似文献
3.
4.
我们研究了左截断右删失数据分位差,基于左截断右删失数据乘积限构造了分位差的经验估计,同时克服经验估计的非光滑性,提出了分位数差的核光滑估计.利用经验过程理论推导出这两个估计的渐近偏差和渐近方差,并且在左截断右删失数据下研究了这两个分位差的大样本性质,获得分位差估计的相合性和渐近正态性.同时给出计算模拟以验证光滑分位差估计的表现,在均方损失的意义下模拟结果表明光滑估计比经验估计具有更好的性质. 相似文献
5.
何书元 《数学年刊A辑(中文版)》1998,(4)
对左截断右删失模型,在不要求分布函数连续的条件下,给出乘积限估计F_n是真分布的一致强相合估计的完整结果.作为推论,还给出右删失模型下的K-M估计和左截断模型下的乘积限估计的一致强相合性的完整结果. 相似文献
6.
基于EM算法及极大似然法研究了左截断右删失数据下单参数Pareto分布的参数估计,导出其迭代式,并应用随机模拟对参数估计式进行了模拟检验,结果表明迭代式能够快速收敛,EM估计值较为精确. 相似文献
7.
在左截断右删失下,本文讨论了一类广义Von-Mises泛函估计的渐近性质.在一定条件下,得到了此类泛函估计的强逼近和U-统计量表示,并由此得出它的强相合性、渐近正态性及重对数律. 相似文献
8.
文中提出了随机左截断右删失数据下的一种光滑分位估计,推导出此光滑估计的相合性和渐近正态性,同时获得了该估计的强弱Bahadur表示定理。 相似文献
9.
《数学的实践与认识》2016,(24)
利用EM算法和MCMC方法得到了左截断右删失数据下离散型寿命失效率变点模型的参数估计.利用筛选法对缺失数据进行填充,对各参数进行Gibbs抽样.随机模拟证实方法可行且参数估计的精度较高. 相似文献
10.
在左截断右删失数据的模型中,文章讨论3了可靠性中一类重要的α-百分剩余寿命函数的非参数估计,证明了该估计的强一致相合性并获得了该仗垢弱收敛性结果。 相似文献
11.
The quantity deficiency which was proposed by Hodges and Lehmann (1970) is used to compare different statistical procedures. In this article, the deficiency of the sample quantile estimator with respect to the kernel quantile estimator for left truncated and right censored (LTRC) data in the sense of Hodges and Lehmann is considered. We also give the optimal bandwidth for the kernel quantile estimator. Monte Carlo studies are conducted to illustrate our results. 相似文献
12.
SUN Liuquan 《中国科学A辑(英文版)》2000,43(5):495-508
Based on random left truncated and right censored data we investigate the one-term Edgeworth expansion for the Studentized
product-limit estimator, and show that the Edgeworth expansion is close to the exact distribution of the Studentized product-limit
estimator with a remainder of On(su-1/2). 相似文献
13.
Receiver operating characteristic (ROC) curves are often used to study the two sample problem in medical studies. However, most data in medical studies are censored. Usually a natural estimator is based on the Kaplan-Meier estimator. In this paper we propose a smoothed estimator based on kernel techniques for the ROC curve with censored data. The large sample properties of the smoothed estimator are established. Moreover, deficiency is considered in order to compare the proposed smoothed estimator of the ROC curve with the empirical one based on Kaplan-Meier estimator. It is shown that the smoothed estimator outperforms the direct empirical estimator based on the Kaplan-Meier estimator under the criterion of deficiency. A simulation study is also conducted and a real data is analyzed. 相似文献
14.
Bootstrap for the conditional distribution function with truncated and censored data 总被引:1,自引:0,他引:1
M. C. Iglesias Pérez W. González Manteiga 《Annals of the Institute of Statistical Mathematics》2003,55(2):331-357
We propose a resampling method for left truncated and right censored data with covariables to obtain a bootstrap version of
the conditional distribution function estimator. We derive an almost sure representation for this bootstrapped estimator and,
as a consequence, the consistency of the bootstrap is obtained. This bootstrap approximation represents an alternative to
the normal asymptotic distribution and avoids the estimation of the complicated mean and variance parameters of the latter. 相似文献
15.
Si‐Li Niu 《Mathematical Methods in the Applied Sciences》2012,35(3):293-306
In this paper, we provide an asymptotic expansion for the mean integrated squared error (MISE) of nonlinear wavelet estimator of survival density for a censorship model when the data exhibit some kind of dependence. It is assumed that the observations form a stationary and α‐mixing sequence. This asymptotic MISE expansion, when the density is only piecewise smooth, is same. However, for the kernel estimators, the MISE expansion fails if the additional smoothness assumption is absent. Also, we establish the asymptotic normality of the nonlinear wavelet estimator. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
16.
Let fn be the non-parametric kernel density estimator of directional data based on a kernel function K and a sequence of independent and identically distributed random variables taking values in d-dimensional unit sphere Sd-1. It is proved that if the kernel function is a function with bounded variation and the density function f of the random variables is continuous, then large deviation principle and moderate deviation principle for {sup x∈sd-1 |fn(x) - E(fn(x))|, n ≥ 1} hold. 相似文献
17.
1.IntroductionTheestimationofpopulationquaillesisofgrestillterestwhenone.isnotpreparedtoassumeaparametricformfortheunderlyingdistribution.Inaddition,quaillesoftenariseasthensturalthingtoestimatewhentheunderlyingdistributionisskewed.LetXIIXZ,')Xubei... 相似文献
18.
Jeffrey D. Hart 《Statistics & probability letters》1984,2(6):363-369
The ability of a kernel density estimator to resolve modes of the underlying density is investigated. For various bimodal densities and three different kernels, the smallest sample size required for the expectation of an optimally smoothed kernel estimator to be bimodal is determined. The optimality criterion employed is equivalent to asymptotic mean integrated squared error for sufficiently smooth densities. 相似文献
19.
We assume T1,...,Tn are i.i.d.data sampled from distribution function F with density function f and C1,...,Cn are i.i.d.data sampled from distribution function G.Observed data consists of pairs(Xi,δi),i=1,...,n,where Xi=min{Ti,Ci},δi=I(Ti Ci),I(A)denotes the indicator function of the set A.Based on the right censored data{Xi,δi},i=1,...,n,we consider the problem of estimating the level set{f c}of an unknown one-dimensional density function f and study the asymptotic behavior of the plug-in level set estimators.Under some regularity conditions,we establish the asymptotic normality and the exact convergence rate of theλg-measure of the symmetric difference between the level set{f c}and its plug-in estimator{fn c},where f is the density function of F,and fn is a kernel-type density estimator of f.Simulation studies demonstrate that the proposed method is feasible.Illustration with a real data example is also provided. 相似文献
20.
Using the blocking techniques and m-dependent methods,the asymptotic behavior of kernel density estimators for a class of stationary processes,which includes some nonlinear time series models,is investigated.First,the pointwise and uniformly weak convergence rates of the deviation of kernel density estimator with respect to its mean(and the true density function)are derived.Secondly,the corresponding strong convergence rates are investigated.It is showed,under mild conditions on the kernel functions and bandwidths,that the optimal rates for the i.i.d.density models are also optimal for these processes. 相似文献