首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The electrochemical oxidation of six metal carbonyls was studied in a mixture of the high Lewis acid, room temperature molten salt, composed of aluminum chloride and ethylpyridinium bromide (2:1 molar ratio) and benzene (50% v/v). Chromiuim hexacarbonyl was found to be reversibly oxidized to the seventeen electron cationo Cr(CO)+6, isoelectronic with vanadium hexacarbonyl. Some stability was also found for the corresponding 17 electron cation of iron pentacarbonyl. The other carbonyl compounds studied Mo(CO)6, W(CO)6, Re2(CO)10, and Mn2(CO)10 exhibit electrochemical behavior characteristic of chemical and electrochemical reactions following the electron transfer reaction. Based on the large dependence of the oxidation potentials on the nature of the central metal atom in this solvent, it is proposed that the metal carbonyls interact with electron deficient species in the melt, decreasing the σ donor ability of the ligand, but increasing its π acceptor capabilities.  相似文献   

2.
The electrochemical reactions of carbonyl cluster compounds M3(CO)12 (M = Fe, Ru, Os) were compared with those of [Fe5C(CO)14]2? and [Fe6C(CO)16]2? in different aprotic solvents. The stability of electrochemically generated products of these clusters in the studied solvents was shown to grow in the following order: tetrahydrofuran < acetone < dichloromethane < acetonitrile.  相似文献   

3.
Based on density functional theory (DFT) calculations, the formation geometries, stability and catalytic properties of single-atom iron anchored on xN-doped graphene (xN-graphene-Fe, x=1, 2, 3) sheet are systemically investigated. It is found that the different kinds and numbers of gas reactants can effectively regulate the electronic structure and magnetic properties of the 3 N-graphene-Fe system. For NO and CO oxidation reactions, the coadsorption configurations of NO/O2 and CO/O2 molecules on a reactive substrate as the initial state are comparably analyzed. The NO oxidation reactions through the Langmuir–Hinshelwood (LH) and Eley-Rideal (ER) mechanisms have relatively smaller energy barriers than those of the CO oxidation processes. In comparison, the preadsorbed 2NO reacting with 2CO molecules (2NO+2CO→2CO2+N2) through ER reactions (<0.4 eV) are energetically more favorable processes. These results can provide beneficial references for theoretical studies on NO and CO oxidation and designing graphene-based catalyst for toxic gas removal.  相似文献   

4.
采用化学还原和电位置换法制备了CoPt 纳米空心球, 该催化剂对甲醇氧化表现出较好的电催化活性.透射电镜(TEM)、能量散射光谱(EDS)和电化学循环伏安实验结果表明, 在0.1 mol·L-1 H2SO4+0.1 mol·L-1CH3OH中进行测试时, CoPt 纳米空心球发生了去合金化过程, 催化剂表面Co元素溶解, 形成了富Pt 表面, 表现出更好的电催化活性, 同时表现出较好的结构稳定性. 采用原位电化学红外光谱在分子水平研究了CoPt 纳米空心球上甲醇氧化过程, 发现甲醇在CoPt 纳米空心球氧化中间产物主要为CO, 且CO表现出异常红外效应, 与CO为探针分子在CoPt纳米空心球上得到的红外光谱结果一致. 研究结果表明, 去合金化方法是一种有效调节催化剂表面组成和性能的手段, 原位电化学红外光谱是潜在的原位研究有机小分子氧化机理的方法, 在燃料电池中将得到广泛的应用.  相似文献   

5.
Transition metal complexes with terminal oxo and dioxygen ligands exist in metal oxidation reactions, and many are key intermediates in various catalytic and biological processes. The prototypical oxo‐metal [(OC)5Cr? O, (OC)4Fe? O, and (OC)3Ni? O] and dioxygen‐metal carbonyls [(OC)5Cr? OO, (OC)4Fe? OO, and (OC)3Ni? OO] are studied theoretically. All three oxo‐metal carbonyls were found to have triplet ground states, with metal‐oxo bond dissociation energies of 77 (Cr? O), 74 (Fe? O), and 51 (Ni? O) kcal/mol. Natural bond orbital and quantum theory of atoms in molecules analyses predict metal‐oxo bond orders around 1.3. Their featured ν(MO, M = metal) vibrational frequencies all reflect very low IR intensities, suggesting Raman spectroscopy for experimental identification. The metal interactions with O2 are much weaker [dissociation energies 13 (Cr? OO), 21 (Fe? OO), and 4 (Ni? OO) kcal/mol] for the dioxygen‐metal carbonyls. The classic parent compounds Cr(CO)6, Fe(CO)5, and Ni(CO)4 all exhibit thermodynamic instability in the presence of O2, driven to displacement of CO to form CO2. The latter reactions are exothermic by 47 [Cr(CO)6], 46 [Fe(CO)5], and 35 [Ni(CO)4] kcal/mol. However, the barrier heights for the three reactions are very large, 51 (Cr), 39 (Fe), and 40 (Ni) kcal/mol. Thus, the parent metal carbonyls should be kinetically stable in the presence of oxygen. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
《Chemical physics》1987,111(3):351-360
The non-equilibrium vibrational kinetics of CO pumped by vibrationally excited N2 has been calculated by solving the vibrational master equations for both N2 and CO molecules, linked by V-V (N2CO) energy exchange processes. The results have been obtained for different values of the parameters governing the kinetics (in particular gas temperature, initial vibrational content of N2, different mixing ratios N2/CO). Emphasis is also given to dissipative channels present in CO, due to bimolecular reactions involving highly vibrationally excited CO molecules. The results shows the essential features of the temporal evolution of CO and N2 vibrational distribution as well as the strong coupling existing between them.  相似文献   

7.
The electrochemical synthesis of δ-fluoroacyl complexes [M]-δ-CORf(M=C5H5(CO)3W or (CO)5Mn; Rf=CF3 or C4F9) was performed according to two procedures: (1) the preliminary electrochemical synthesis of [M] from [M]2 followed by reaction with a fluorine-containing compound and (2) the electrochemical synthesis of [M] in the presence of a fluorine-containing compound. Trifluoroacetic anhydride was demonstrated to be the best acylating agent in these reactions. The electrochemical properties of the resulting complexes were studied. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 373–375, February, 2000.  相似文献   

8.
The reduction of cyclopentadienylmetal halide complexes is generally considered to involve addition of an electron to an orbital that is antibonding with respect to the metal-halide bond. Subsequent metal-halide bond cleavage yields the halide and an organometallic radical. At inert electrodes, this radical is reduced further to an 18-electron anion. This series of reactions constitutes a prototypical ECE mechanism. Chemical reduction can be used to divert the radical into other pathways such as electron transfer chain catalyzed substitution. Attempts to initiate such reductively induced substitution reactions of CpFe(CO)2I and Cp′Mo(CO)3I give very different results, suggesting that these very similar complexes are reduced via substantially different mechanisms. Very likely, the molybdenum complex reacts via a DISP mechanism instead of ECE. The difference in electrochemical reduction mechanism as well as the different reactivity toward reductively induced substitution are explained in terms of a difference in the formation constants of 19-electron intermediates.  相似文献   

9.
The electrochemical CO2 reduction reaction (CO2RR) to yield synthesis gas (syngas, CO and H2) has been considered as a promising method to realize the net reduction in CO2 emission. However, it is challenging to balance the CO2RR activity and the CO/H2 ratio. To address this issue, nitrogen‐doped carbon supported single‐atom catalysts are designed as electrocatalysts to produce syngas from CO2RR. While Co and Ni single‐atom catalysts are selective in producing H2 and CO, respectively, electrocatalysts containing both Co and Ni show a high syngas evolution (total current >74 mA cm?2) with CO/H2 ratios (0.23–2.26) that are suitable for typical downstream thermochemical reactions. Density functional theory calculations provide insights into the key intermediates on Co and Ni single‐atom configurations for the H2 and CO evolution. The results present a useful case on how non‐precious transition metal species can maintain high CO2RR activity with tunable CO/H2 ratios.  相似文献   

10.
Two stereoisomers of cis-[Ru(bpy)(pynp)(CO)Cl]PF6 (bpy = 2,2′-bipyridine, pynp = 2-(2-pyridyl)-1,8-naphthyridine) were selectively prepared. The pyridyl rings of the pynp ligand in [Ru(bpy)(pynp)(CO)Cl]+ are situated trans and cis, respectively, to the CO ligand. The corresponding CH3CN complex ([Ru(bpy)(pynp)(CO)(CH3CN)]2+) was also prepared by replacement reactions of the chlorido ligand in CH3CN. Using these complexes, ligand-centered redox behavior was studied by electrochemical and spectroelectrochemical techniques. The molecular structures of pynp-containing complexes (two stereoisomers of [Ru(bpy)(pynp)(CO)Cl]PF6 and [Ru(pynp)2(CO)Cl]PF6) were determined by X-ray structure analyses.  相似文献   

11.
MoS2 is an intriguing layered material widely used in catalysis, lubrication, optoelectronic devices and many other fields, where various structural defects (e.g., vacancies, edges, dopants) will be created in the synthesis and application processes. The promoting effect of defects on the electrochemical reactions, for example, oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER), on MoS2 has been intensively pursued for efficient catalysts, but should be avoided for durable and superior lubricants and optoelectronic devices working in many atmospheric/aqueous environments. Here, from the perspectives of density-functional-theory simulation, we review the contemporary research progresses on these electrochemical reactions and the underlying microscopic mechanisms of defective MoS2, and finally project the future research trends and challenges on the electrochemical catalysis and corrosion of defective MoS2.  相似文献   

12.
The electrochemical CO2 reduction reaction (CO2RR) to yield synthesis gas (syngas, CO and H2) has been considered as a promising method to realize the net reduction in CO2 emission. However, it is challenging to balance the CO2RR activity and the CO/H2 ratio. To address this issue, nitrogen-doped carbon supported single-atom catalysts are designed as electrocatalysts to produce syngas from CO2RR. While Co and Ni single-atom catalysts are selective in producing H2 and CO, respectively, electrocatalysts containing both Co and Ni show a high syngas evolution (total current >74 mA cm−2) with CO/H2 ratios (0.23–2.26) that are suitable for typical downstream thermochemical reactions. Density functional theory calculations provide insights into the key intermediates on Co and Ni single-atom configurations for the H2 and CO evolution. The results present a useful case on how non-precious transition metal species can maintain high CO2RR activity with tunable CO/H2 ratios.  相似文献   

13.
The reaction of Fe3(CO)12 ( 13 ) with 7,8‐dithiabicyclo[4.2.1]nona‐2,4‐diene 7‐exo‐oxide ( 12 ) yields the sulfenato‐thiolato complex 14 , which is used as starting material for further reactions. The disulfenato complex 17 is obtained by using one equivalent of dimethyldioxirane (DMD), and the monoepoxide 18 is prepared by the oxidation of 14 with an excess of DMD. Complex 14 can be converted to the monophosphine complexes 19a and 19b by subsequent substitution of one CO ligand using trimethylaminoxide Me3NO and triphenylphosphine PPh3. Additional substitution reactions are done with 17 by using acetonitrile as a ligand to form 20a and 20b . In the electrochemical part of the paper, the reactions of the reduced iron species 14 , 15 , 17 , and 19a are studied.  相似文献   

14.
The mercury-photosensitized oxidation of CO was studied at 275°C over a wide range of [O2]/[CO] ratios in the absence and presence of the oxygen atom scavenger 2-trifluoromethylpropene (TMP) and at 25°C at low [O2]/[CO] ratios in the presence of TMP. By following the quantum yield of CO2 production, Φ {CO2}, as a function of the [O2]/[CO] ratio, the reactions of vibrationally excited CO (v υ 9) and electronically excited O2, probably in the c1Σ?u state, were studied. At low [O2]/[CO] ratios the predominant reactions are of vibrationally excited CO (v υ 9). Relative rate constants for chemical reaction versus deactivation of CO (v υ 9) were obtained. At higher [O2]/[CO] ratios, the principal reactions are of electronically excited O2. Relative rate constants for chemical reactions and deactivation of this electronically excited O2 with CO, O2, and TMP were obtained. From the effect of total pressure on Φ {CO2}, it is proposed that an intermediate CO3 is formed in the reaction of electronically excited O2 with CO.  相似文献   

15.
Dihalogermylenes, dihalostannylenes, and their complexes (EI2, ECl2·dioxane, and (CO)5W=ECl2·THF, where E = Ge or Sn), unlike organylgermylenes, are not inserted at the Si—H (Ge—H) bond of triethylsilane (triethylgermane). The reactions of SnI2, ECl2·dioxane, and (CO)5W=ECl2·THF (E = Ge or Sn) with Et3E"H (E" = Si or Ge) occur as redox processes. Depending on the nature of the reagents, the reactions afford products of oxidative coupling (Et3SiSiEt3) and/or haloiodination (Et3SiX and Et3GeX) of triethylsilane (triethylgermane). The proposed mechanism of these reactions involves the electron transfer to form radical-ion pairs.  相似文献   

16.
Electrochemical and photoelectrochemical CO2 reductions were carried out with Re(bh‐bipy)(CO)3(OH2) cocatalysts in aqueous electrolytes. Competition between hydrogen evolution and CO2 reduction was observed under (photo)electrochemical conditions for both glassy carbon and CuInS2 electrodes. The partial current density for CO generation is limited even though the additional potential is applied. However, electrochemical hydrogen evolution was suppressed under photoelectrochemical conditions, and the selectivity and partial current density for CO were considerably increased when compared to the electrochemical reduction in an identical electrode/electrolyte system. This finding may provide insights into using semiconductor/liquid junctions for solar fuel devices to overcome the limitations of electrolysis systems with an external bias.  相似文献   

17.
CO is a key intermediate during electrochemical CO2 conversion. The deep reduction of CO to value-added chemical products is a crucial strategy for effective carbon utilization. Single transition metal atoms supported by two-dimensional material present a novel paragon for various catalytic reactions. Herein, we employ first principle theory to study a series of single 3d-transition metal atoms supported by monolayered MoS2 with S vacancy as efficient electrocatalyst for CO electroreduction to CH4. The screening result indicates that Cr doped defective MoS2 (labeled as Cr/Sv-MoS2) is beneficial to electroreduction of CO to CH4, with even less negative limiting potential (−0.32 V) than Cu that has been widely studied as the most promising electrocatalyst in experiment. The outstanding activity is derived from the regulation of the d-band-center of doped Cr and Mo atoms exposed on the surface. This discovery provides a theoretical basis for the preparation of future electrocatalysts for CORR.  相似文献   

18.
Reduction of CO2 by direct one‐electron activation is extraordinarily difficult because of the ?1.9 V reduction potential of CO2. Demonstrated herein is reduction of aqueous CO2 to CO with greater than 90 % product selectivity by direct one‐electron reduction to CO2.? by solvated electrons. Illumination of inexpensive diamond substrates with UV light leads to the emission of electrons directly into water, where they form solvated electrons and induce reduction of CO2 to CO2.?. Studies using diamond were supported by studies using aqueous iodide ion (I?), a chemical source of solvated electrons. Both sources produced CO with high selectivity and minimal formation of H2. The ability to initiate reduction reactions by emitting electrons directly into solution without surface adsorption enables new pathways which are not accessible using conventional electrochemical or photochemical processes.  相似文献   

19.
20.
The accurate study of the electron transfer activity of the tetraanion [Pt19(CO)22]4− is presented together with that of the dianion [Pt38(CO)44]2−, which was previously studied by spectroelectrochemistry but only partially examined from the electrochemical viewpoint. The main feature of the two clusters is that they undergo a sequence of close-spaced pairs of reversible one-electron processes, which are qualitatively reminiscent of those exhibited by the dianion [Pt24(CO)30]2−. In order to focus on such unique aspect of the three structurally characterised platinum clusters, we have investigated (and reinvestigated) their electrochemical and spectroelectrochemical redox properties, also reporting on the electron paramagnetic resonance (EPR) spectrum of the monoanion [Pt24(CO)30], which represents the first successful study of the paramagnetism of homoleptic platinum–carbonyl clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号