首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
结构与颗粒材料相互作用广泛存在于各工程领域,其研究过程中涉及的连续-离散耦合计算方法面对诸多挑战.本文提出了粘接-映射混合算法来研究连续体与离散介质耦合动力学问题.将连续体模型划分为内部区域及与颗粒接触的边界区域.边界区域采用粘接算法模拟连续体外部形状并使用高效的球形接触判断准则;提出一种包含Rayleigh阻尼映射的有限元映射质点弹簧算法来精确计算连续体内部区域内力和变形.二者相结合构成粘接-映射混合算法,并引入计算机集群和GPU(图形处理器)并行技术,对埋没于颗粒材料中受激振动固支方板的连续-离散耦合动力学问题进行了数值仿真研究.结果表明,粘接-映射混合算法有利于双层级并行算法的程序实现及优化,并在连续-离散耦合界面进行快速接触判断的同时实现对颗粒材料中方板位移、变形、振动形态等参数的研究.通过定幅扫频和定频变幅方式考察激振力频率和幅值对振动板非线性动力学行为的影响并观察到二倍周期现象,同时给出了该连续-离散耦合系统中颗粒体系的能量耗散特性.   相似文献   

2.
将一根细管插入填充有颗粒的静止容器中并对管施加竖直振动,颗粒将在管内发生上升运动,并最终稳定在一定高度,这一现象与液体毛细效应类似,被称为颗粒毛细效应.为探究颗粒毛细效应过程中伴随的颗粒尺度动力学行为及机理,基于离散元方法建立颗粒运动模型,对颗粒毛细效应动力学过程和特性开展数值模拟研究.模拟再现了文献中实验得到的颗粒毛细效应全过程,给出了管内颗粒柱高度随时间的演变规律,结果表明,受到颗粒系统参数的影响,本模拟条件下颗粒毛细效应过程呈现单周期上升、倍周期上升和倍周期稳定三个阶段,在倍周期上升阶段颗粒柱上升速度逐渐减小,平缓过渡到稳定阶段.在此基础上,分析了管内颗粒速度场和填充率分布随时间的演变特性,揭示了颗粒毛细效应过程中由容器传输到管内的颗粒的占比分布.研究发现,管内不同高度位置颗粒的运动并不同步,随着管的振动,管内出现速度波,速度波的传播引起管内颗粒出现膨胀和压缩交替的情况,从而管内颗粒填充率随时间发生周期性波动;在上升阶段,越接近管壁由容器传输到管内的颗粒占比越大,在稳定阶段,管内上层颗粒的对流引起容器传输到管内的颗粒占比发生反转.   相似文献   

3.
随机激励对软弹簧杜芬振子动力学的分散作用   总被引:4,自引:0,他引:4  
郭云松  甘春标  叶敏 《应用力学学报》2005,22(2):285-287,i012
讨论了有界噪声激励对软弹簧杜芬振子的倍周期分岔至混沌运动的影响。利用蒙特卡罗方法,通过对系统受侵蚀安全盆的变化状况进行了观察,并由此对后继动力学分析的初始点进行了选取。系统的相图、倍周期分岔图以及庞加莱映射图等方面的数值结果表明,外加随机激励的作用往往掩盖原确定性系统内在的规则运动,对原确定性系统的运动具有较典型的分散作用,可延缓系统的倍周期分岔,也可使得系统内在随机行为提前发生,即可使得系统更容易出现混沌运动。  相似文献   

4.
The Laguerre polynomial approximation method is applied to study the stochastic period-doubling bifurcation of a double-well stochastic Duffing system with a random parameter of exponential probability density function subjected to a harmonic excitation. First, the stochastic Duffing system is reduced into its equivalent deterministic one, solvable by suitable numerical methods. Then nonlinear dynamical behavior about stochastic period-doubling bifurcation can be fully explored. Numerical simulations show that similar to the conventional period-doubling phenomenon in the deterministic Duffing system, stochastic period-doubling bifurcation may also occur in the stochastic Duffing system, but with its own stochastic modifications. Also, unlike the deterministic case, in the stochastic case the intensity of the random parameter should also be taken as a new bifurcation parameter in addition to the conventional bifurcation parameters, i.e. the amplitude and the frequency of harmonic excitation.  相似文献   

5.
The force chain is the core of the multi-scale analysis of granular matter. Accurately extracting the force chain information among particles is of great significance to the study of particle mechanics and geological hazards caused by particle flow. However, in the photoelastic experiment, the precise identification of the branching points of force chains has not been effectively realized. Therefore, this study proposes an automatic extraction method of force chain key information. First, based on the Hough transform and the Euclidean distance, a particle geometric information identification model is established and geometric information such as particle circle center coordinates, radius, contact point location, and contact angle is extracted. Then, a particle contact force information identification model is established following the color gradient mean square method. The model realizes the rapid calibration and extraction of a large number of particle media contact force information. Next, combined with the force chain composition criterion and its quasilinear feature, an automatic extraction method of force chain information is established, which solves the problem of the accurate identification of the force chain branch points. Finally, in the photoelastic experiment of ore drawing from a single drawpoint, the automatic extraction method of force chain information is verified. The results show that the macroscopic distribution of force chains during ore drawing from a single drawpoint is left–right symmetrical. Strong force chains are mostly located on the two sides of the model but in small numbers and they mainly develop vertically. Additionally, the ends are mostly in a combination of Y and inverted Y shapes, while the middle is mostly quasilinear. Weak force chains are abundant and mostly distributed in the middle of the model, and develop in different directions. The proposed extraction method accurately extracts the force chain network from the photoelastic experiment images and dynamically characterizes the force chains of granular matter, which has significant advantages in particle geometry information extraction, force chain branch point discrimination, force chain retrieval, and force chain distribution and its azimuthal characterization. The results provide a scientific basis for studying the macroscopic and microscopic mechanical parameters of granular matter.  相似文献   

6.
点载荷作用下密集颗粒物质的传力特性分析   总被引:2,自引:0,他引:2  
利用颗粒离散元商业软件PFC3D, 模拟了在2m*1m*0.01m容器中直径分别为0.01m, 0.008m和0.006m的颗粒各1*10$^4$个, 受重力作用下的静态密集堆积; 以此为初始条件, 在表层随机选择7个颗粒分别施加5.2*10$^{ - 2}$N(100倍最大颗粒重量)的点载荷, 进行应力传播特点研究. 结果表明: 力的传递在局部范围内呈现很强的各向异性; 应力涨落随着距离的增加呈指数下降; 在大于5倍最大颗粒粒径时, 其分布可以使用弹性力学理论来计算. 探讨了摩擦系数$\mu =0$, 0.2, 1对应力传递的影响, 随着摩擦系数的增加, 各向异性范围减小.  相似文献   

7.
The chaotic vibrations of a bimetallic shallow shell of revolution under time-varying temperature excitation are investigated in the present study. The governing equations are established in forms similar to those of classical single-layered shell theory by re-determination of reference surface. The nonlinear differential equation in time-mode is derived by variational method following an assumed spatial-mode. The Melnikov function is established theoretically to estimate regions of the chaos, and the Poincaré map, phase portrait, Lyapunov exponent, and Lyapunov dimension are used to determine if a chaotic motion really appears. Further investigations are developed by means of detailed numerical simulation, and both the bifurcation diagrams and corresponding maximum Lyapunov exponent are illustrated. The influence of static and time-dependent temperature parameters, height parameter of the shell, and damping parameter on the dynamic characteristics is examined. Interesting phenomena such as the onset of chaos, transient chaotic motion, chaos with interior crisis and period window, period-doubling scenario and reversed period-doubling bifurcation leading to chaos, jump phenomena, and chaos suddenly converting to period orbit have been observed from these figures.  相似文献   

8.
颗粒物质中的多尺度问题   总被引:1,自引:0,他引:1  
颗粒物质是大量离散的固体颗粒相互作用而组成的复杂体系. 依据颗粒排布的稀疏程度, 体系可分为颗粒气体、颗粒流体和颗粒固体,它们有不同本质的动量传递和能量耗散机制. 后两者属于密集颗粒物质体系,内部形成了颗粒$\to $力链$ \to$体系的多尺度结 构,并涉及多个特征时间尺度,是典型的多尺度体系. 合理分割体系结构层 次、正确理解不同层次的物理过程、并确定它们之间的关联是密集颗粒物质研究的核心任务. 本文依次分析了密集颗粒物质的内在物理图像、多尺度结构层次和特征时间等,并介绍了多 尺度研究框架.  相似文献   

9.
We investigate the nonlinear dynamics of a system of generalized Duffing-type MEMS resonator in the frame of simple analog electronic circuit. A mathematical model formed for the proposed generalized Duffing-type MEMS oscillator in which nonlinearities arising out of two different sources such as mid-plane stretching and electrostatic force can lead to variety of nonlinear phenomena such as period-doubling route, transient chaos and homo-/heteroclinic oscillations. These phenomena were confirmed through detailed numerical investigations such as phase portraits, bifurcation diagram, Poincaré map, Lyapunov exponent spectrum and finite-time Lyapunov exponent. The analog circuit realization for the Duffing-type MEMS resonator is constructed. The numerically simulated results are confirmed in the laboratory experimental observations which are closely matched with each other. The experimentally observed chaotic attractor confirmed through FFT spectrum, 0–1 test and Poincaré cross section. In addition, the robustness of the signal strength is confirmed through signal-to-noise ratio.  相似文献   

10.
颗粒流蠕动行为是颗粒物质在竖直管中流动时常见的一种流动现象,其产生机理较复杂。为此,本文在在内径为150mm、高为5000mm的竖直管实验装置上,以FCC催化剂为固体颗粒物料,采用PV6型颗粒速度测量仪,测量不同颗粒流率下竖直管中的颗粒下行蠕动流动速度以及颗粒固含率,系统地考察了颗粒物质在竖直管中下行流动时的蠕动流动特性及产生机理。实验结果表明,颗粒物质在竖直管中下行流动时的流动行为可划分为两种形式。在颗粒流率较小时,颗粒物质下行速度呈现脉冲式变化,有速度停滞,可称之为蠕动I型流动。随着颗粒流率的增加,颗粒下行速度停顿消失,但仍是起伏变化,为蠕动II型流动。当颗粒流率增大到一定值后,颗粒物质下行蠕动行为消失,转变为流化流动。颗粒物质下行的蠕动行为是出口区颗粒成拱与崩塌、颗粒与器壁滑动摩擦和颗粒力链作用的综合反映。  相似文献   

11.
磁浮轴承-转子系统非线性动态特性分析   总被引:3,自引:0,他引:3  
考虑非线性电磁力对刚性Jeffcott转子系统的影响,采用Hopf分岔理论及CPNF法对系统平衡点解和周期解进行研究,数值仿真得到系统Jacobi矩阵特征值、轴心轨迹图和Poincare映射图。转子运动呈现Hopf分岔、倍周期分岔及拟周期运动等复杂的非线性动力学特征,其结果可为磁浮轴承-转子系统设计和运行状态控制提供理论依据。  相似文献   

12.
The research on the coupling method of non-spherical granular materials and fluids aims to predict the particle–fluid interaction in this study. A coupling method based on superquadric elements is developed to describe the interaction between non-spherical solid particles and fluids. The discrete element method (DEM) and the smoothed particle hydrodynamics (SPH) are adopted to simulate granular materials and fluids. The repulsive force model is adopted to calculate the coupling force and then a contact detection method is established for the interaction between the superquadric element and the fluid particle. The contact detection method captures the shape of superquadric element and calculates the distance from the fluid particle to the surface of superquadric element. Simulation cases focusing on the coupling force model, energy transfer, and large-scale calculations have been implemented to verify the validity of the proposed coupling method. The coupling force model accurately represents the water entry process of a spherical solid particle, and reasonably reflects the difference of solid particles with different shapes. In the water entry process of multiple solid particles, the total energy of the water entry process of multiple solid particles tends to be stable. The collapse process of the partially submerged granular column is simulated and analyzed under different parameters. Therefore, this coupling method is suitable to simulate fluid–particle systems containing solid particles with multiple shapes.  相似文献   

13.
The bifurcation and chaos phenomena of two-dimensional airfoils with multiple strong nonlinearities are investigated.First,the strongly nonlinear square and cubic plunging and pitching stiffness terms are considered in the airfoil motion equations,and the fourth-order Runge-Kutta simulation method is used to obtain the numerical solutions to the equations.Then,a post-processing program is developed to calculate the physical parameters such as the amplitude and the frequency based on the discrete numerical solutions.With these parameters,the transition of the airfoil motion from balance,period,and period-doubling bifurcations to chaos is emphatically analyzed.Finally,the critical points of the period-doubling bifurcations and chaos are predicted using the Feigenbaum constant and the first two bifurcation critical values.It is shown that the numerical simulation method with post-processing and the prediction procedure are capable of simulating and predicting the bifurcation and chaos of airfoils with multiple strong nonlinearities.  相似文献   

14.
The effects of the supported angle on the stability and dynamical bifurcations of an inclined cantilevered pipe conveying fluid are investigated. First, a theoretical model of the pipe is developed through the force balance and stress-strain relationship. Second, the response surfaces, stability, and critical lines of the typical hanging system (H-S) and standing system (S-S) are discussed based on the modal analysis. Last, the bifurcation diagrams of the pipe are presented for different supported angles. It is shown that pipes will undergo a series of bifurcation processes and show rich dynamic phenomena such as buckling, Hopf bifurcation, period-doubling bifurcation, chaotic motion, and divergence motion.  相似文献   

15.
Ma   Wei  Mapuranga  Tafara 《Nonlinear dynamics》2023,111(9):7993-8020

In this research, we offer eigenvalue analysis and path following continuation to describe the impact, stick, and non-stick between the particle and boundaries to understand the nonlinear dynamics of an extended Fermi oscillator. The principles of discontinuous dynamical systems will be utilized to explain the moving process in such an extended Fermi oscillator. The motion complexity and stick mechanism of such an oscillator are demonstrated using periodic and chaotic motions. The major parameters are the frequency, amplitude in periodic excitation force, and the gap between the top and bottom boundary. We employ path-following analysis to illustrate the bifurcations that lead to solution destabilization. We present the evolution of the period solutions of the extended Fermi oscillator as the parameter varies. From the viewpoint of eigenvalue analysis, the essence of period-doubling, saddle-node, and Torus bifurcation is revealed. Numerical continuation methods are used to do a complete one- and two-parameter bifurcation analysis of the extended Fermi oscillator. The presence of codimension-one bifurcations of limit cycles, such as saddle-node, period-doubling, and Torus bifurcations, is shown in this work. Bifurcations cause all solutions to lose stability, according to our findings. The acquired results provide a better understanding of the extended Fermi oscillator mechanism and demonstrate that we may control the system dynamics by modifying the parameters.

  相似文献   

16.
Kumar  Aman  DasGupta  Anirvan 《Nonlinear dynamics》2021,103(1):293-308

In this paper, the dynamics of a particle placed on a thin circular plate carrying circumferential harmonic travelling wave is studied. Coulomb friction is used to model the particle–surface interaction. Distinct regions on the plate surface are identified where either of the three phases of particle motion, namely jumping, sliding and sticking, occurs. Also, the effect of wave frequency and the plate geometry on these regions is studied. Interestingly, there exists an optimum plate thickness for which the region of sliding is maximum. At certain wave frequencies, from the numerical simulations within sticking and sliding regions, it is observed that the average particle motion spirals inwards towards the plate centre. Such an average motion is observed whenever the particle is placed initially with a zero velocity relative to the plate surface. The Gedanken experiments discussed herein provide cogent explanations to all the observed average (slow) dynamics and are also found to be useful in predicting the slow dynamics of the particle a priori, that is, before the actual numerical simulations. The particle’s velocity couples the radial and tangential sliding friction components and is found to be the key physical feature that explains the observed behaviour. Also, it is observed that the plate surface excited by circumferential travelling waves can provide acoustic lubrication to a particle by reducing the limiting force required to move it relative to the surface. The methods discussed in this paper can be extended to study the dynamics of a group of particles (granular materials) and extended rigid bodies, interacting with such surface waves.

  相似文献   

17.
陈福振  李亚雄  史腾达  严红 《力学学报》2022,54(6):1572-1589
静态颗粒堆在重力作用下的坍塌问题, 是认识和理解许多人为过程和自然现象的基础. 采用传统方法进行模拟存在单颗粒追踪数量大、宏观模拟流变特性明显和相态演变复杂等计算难点. 本文从颗粒介质表现出不同相态的物理机理出发, 对全相态概念进行了定义并进行了区域划分. 根据颗粒介质的应力-应变关系及体积分数的不同, 通过确定不同相态之间的耦合关系和转化准则, 将描述各相态的现有理论有效结合起来, 建立了描述颗粒介质经历全部相态的耦合模型理论. 采用光滑离散颗粒流体动力学方法和离散单元法相耦合的策略, 对颗粒介质物理模型求解, 实现了对不同长径比下的三维圆柱型颗粒堆坍塌过程的数值模拟. 计算结果与实验结果吻合较好, 同时与离散单元法相比, 计算量得到了控制. 不仅捕捉到了不同参数影响下颗粒堆坍塌后沉积的不同现象, 同时获得了不同条件参数对颗粒堆坍塌后铺展特性的影响规律, 为揭示工业和自然界中广泛存在的颗粒介质复杂运动机理提供有效的支撑.   相似文献   

18.
金花  吕小红  张子豪  王昕 《力学学报》2023,55(1):203-212
大量的多吸引子共存是引起齿轮传动系统具有丰富动力学行为的一个重要因素.多吸引子共存时,运动工况的变化以及不可避免的扰动都可能导致齿轮传动系统在不同运动行为之间跳跃变换,对整个机器产生不良的影响.目前,一些隐藏的吸引子没有被发现,共存吸引子的分岔演化规律没有被完全揭示.考虑单自由度直齿圆柱齿轮传动系统,构建由局部映射复合的Poincaré映射,给出Jacobi矩阵特征值计算的半解析法.应用数值仿真、延拓打靶法和Floquet特征乘子求解共存吸引子的稳定性与分岔,应用胞映射法计算共存吸引子的吸引域,讨论啮合频率、阻尼比和时变激励幅值对系统动力学的影响,揭示齿轮传动系统倍周期型擦边分岔、亚临界倍周期分岔诱导的鞍结分岔和边界激变等不连续分岔行为.倍周期分岔诱导的鞍结分岔引起相邻周期吸引子相互转迁的跳跃与迟滞,使倍周期分岔呈现亚临界特性.鞍结分岔是共存周期吸引子出现或消失的主要原因.边界激变引起混沌吸引子及其吸引域突然消失,对应周期吸引子的分岔终止.  相似文献   

19.
In the present paper, the nonlinear behavior of bubble growth under the excitation of an acoustic pressure pulse in non-Newtonian fluid domain has been investigated. Due to the importance of the bubble in the medical applications such as drug, protein or gene delivery, blood is assumed to be the reference fluid. Effects of viscoelasticity term, Deborah number, amplitude and frequency of the acoustic pulse are studied. We have studied the dynamic behavior of the radial response of bubble using Lyapunov exponent spectra, bifurcation diagrams, time series and phase diagram. A period-doubling bifurcation structure is predicted to occur for certain values of the effects of parameters. The results show that by increasing the elasticity of the fluid, the growth phenomenon will be unstable. On the other hand, when the frequency of the external pulse increases the bubble growth experiences more stable condition. It is shown that the results are in good agreement with the previous studies.  相似文献   

20.
Granular matter can exhibit solid or liquid behavior, which contains complex physical mechanisms. In this work, we experimentally investigated the structural relaxation and avalanche dynamics of particle piles under vertical vibration. The influence of vibration parameters on the avalanche process was studied. The morphological features of avalanches were recorded and classified using high-speed camera. The effects of vibration parameters and particle properties on the relaxation mode are obtained. It is found that the evolution of particle pile height with time can be described by an exponential decay function. The relaxation rate and avalanche characteristics of four types of particles with different sizes are discussed. At the same acceleration level, for two larger particles, a smaller amplitude (A = 0.025 mm) leads to a faster relaxation rate, while for two smaller particles, a large amplitude (A = 0.500 mm) leads to a faster relaxation rate. The analogy powder surface tension is introduced to address the cohesion and flowability evolution of particles under vibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号