首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dissociative chemisorption of methanol at a platinum electrode in an acid medium has been studied by electrochemically modulated infrared reflectance spectroscopy and leads to the formation of several adsorbates, depending on the electrode potential and the surface structure.In this part of the series, three types of adsorbate were identified on a well-defined Pt (100) surface: linearly bonded CO, bridge-bonded CO and a third species which is likely to have a carbonyl CO bond. These three species are potential-dependent, but, conversely to polycrystalline platinum, they coexist on the Pt (100) surface at all bulk concentrations of methanol, in the range 5 × 10−4 to 5 M.  相似文献   

2.
A novel Pt + Ru electrode material is shown to be highly active for the direct electro-oxidation of methanol in H2SO4 solutions and to show very little tendency to poison. X-ray photoelectron spectroscopy of this material before use as an anode showed that the ruthenium is oxidised and that there is an important surface concentration of oxidised platinum. After prolonged use as a methanol-oxidation anode, the concentration of oxidised platinum is somewhat increased and there is no evidence for any Pt-CO or Pt2 = CO species; rather adsorbed formate is present. These data are consistent with Ru acting as a promoter of active surface oxygen. Dispersion of the Pt and Ru on a pure carbon support gives a much greater performance per gram of precious metal; however, the initial increase in overpotential is greater by over 100 mV. The differences in the catalytic behaviour of these two materials is discussed, and the importance of competing reactions is considered.  相似文献   

3.
It is shown that platinum can be determined by anodic stripping voltammetry at the peak of selective electrooxidation of copper from intermetallic phase with platinum of Cu3Pt composition. The composition of intermetallic copper-platinum phase formed on the electrode during pre-electrolysis was calculated on the amount of potential displacement (ΔЕ) of copper electrooxidation.  相似文献   

4.
Effect of electrochemical oxidation of glassy carbon on deposition of platinum particles and electrocatalytic activity of platinum supported on oxidized glassy carbon (Pt/GCOX) were studied for methanol oxidation in H2SO4 solution. Platinum was potentiostatically deposited from H2SO4 + H2PtCl6 solution. Glassy carbon was anodically polarised in 0.5 M H2SO4 at 2.25 V vs. saturated calomel electrode (SCE) during 35 s. Electrochemical treatment of GC support, affecting not significantly the real Pt surface area, leads to a better distribution of platinum on the substrate and has remarkable effect on the activity. The activity of the Pt/GCOX electrode for methanol oxidation is larger than polycrystalline Pt and for more than one order of magnitude larger than Pt/GC electrode. This increase in activity indicates the pronounced role of organic residues of GC support on the properties of Pt particles deposited on glassy carbon.  相似文献   

5.
Surface processes of CO2 reduction on Pt(210), Pt(310), and Pt(510) electrodes were studied by cyclic voltammetry. Different surface structures of these platinum single crystal electrodes were obtained by various treatment conditions. The experimental results illustrated that the electrocatalytic activity of Pt single crystal electrodes towards CO2 reduction is decreased in an order of Pt(210)>Pt(310)>Pt(510), i.e., with the decrease of (110) step density on well-defined surfaces. When the surfaces were reconstructed due to oxygen adsorption, the catalytic activity of all the three electrodes has been enhanced to a certain extent. Although the activity order remains unchanged, the electrocatalytic activity has been enhanced more significantly as the density of (110) step sites is more intensive on the Pt single crystal surface. It has revealed that the more open the surface structure is, the more active the Pt single crystal electrode will be, and the easier for the electrode to be transformed into a surface structure that exhibits higher activity under external inductions. However, the relatively ordered surfaces of Pt single crystal electrode are comparatively stable under the same external inductions. The present study has gained knowledge on the interaction between CO2 and Pt single crystal electrode surfaces at a microscopic level, and thrown new insight into understanding the surface processes of electrocatalytic reduction of CO2.  相似文献   

6.
Kinetics and mechanism of nitrate and nitrite reduction on Pt(100) electrode modified by Cu adatoms have been studied in solutions of sulfuric and perchloric acids by means of cyclic voltammetry and in situ IR-spectroscopy. It has been shown that the surface redox process with participation of ammonia or hydroxylamine at 0.5–0.9 V occurs only on the Cu-free platinum. The causes of this effect could be low adsorption energy of nitrate reduction products on copper or changes in the composition of the products (ammonia for Pt(100) and N2O for Pt(100)+Cu). Nitrate reduction on Pt(100)+Cu electrode is much faster in the perchloric acid solution (by several orders of magnitude) as compared with unmodified platinum as a result of induced adsorption of nitrate anions in the presence of partly charged Cu atoms. In the solutions of sulfuric acid the rate of nitrate reduction is considerably lower as copper adatoms facilitate adsorption of sulfate anions, which block the adsorption sites for the nitrate.  相似文献   

7.
Platinum single-crystal electrodes of 5 mm diameter were prepared for in situ infrared spectroscopic measurements by melting platinum wires. The linear potential sweep voltammograms of hydrogen adsorption/desorption on Pt (111), (110) and (100) in 0.5 M sulphuric acid are in excellent agreement with those observed on smaller platinum single-crystal surfaces.The adsorption and oxidation of CO on Pt (111) in 0.5 M sulphuric acid was studied by in situ polarization modulated infrared reflection absorption spectroscopy. The effects of the initial adsorption potential and surface reconstruction on the nature and oxidation mechanism of the adsorbed CO layer are reported.  相似文献   

8.
Low-energy electron diffraction patterns were obtained for Pt(100), Pt(111) and polycrystalline electrodes before and after exposure to aqueous 1 M H2SO4. Linear potential scan voltammograms were recorded. The results demonstrate that one of the principal peaks in the hydrogen region of the current-potential curves of polycrystalline Pt is assignable to Pt(100) and the other to Pt(111). The maximum amount of chemisorbed hydrogen corresponds to one hydrogen atom per surface Pt atom. The Pt(100)[1×1], Pt(111) and polycrystalline surfaces appear to withstand prolonged voltammetric characterization at potentials between ?0.2 and 1.2 V vs. a calomel reference. Variation of the voltammetric characteristics of hydrogen chemisorption with changes in the nature of the supporting electrolyte anion are described.  相似文献   

9.
The electrocatalytic Pt-Mo system was obtained by formation of platinum particles on the Mo surface under its contact with PtC62− (PtCl42−) under the open circuit conditions. Cyclic voltammograms of the obtained Pt(Mo) electrodes feature well pronounced peaks of hydrogen adsorption and desorption on Pt particles. Nonuniform platinum distribution across the electrode surface was found. Pt(Mo) electrodes showed a higher specific activity in the reaction of methanol oxidation in the potential range of 0.35–0.45 V (RHE) as compared to Pt/Pt.  相似文献   

10.
X-ray photoelectron spectroscopy (XPS) (with AlKα and AgLα radiations) and scanning tunneling microscopy (STM) were used to study the interaction of two model samples prepared by vacuum evaporation of platinum on highly oriented pyrolytic graphite (HOPG) with NO2 at room temperature. According to STM data, platinum evaporation on the graphite surface produced particles of a flattened shape. In the Pt/HOPGS1 sample with a lower concentration of platinum, the average diameter of particles d and the height-to-diameter ratio h/d were 2.8 nm and 0.29, respectively. In the Pt/HOPG-S2 sample with a higher concentration of platinum, the average values of d and h/d were 5.1 nm and 0.32. When the samples interacted with NO2 (P ≈ 3 × 10–6 mbar), the particles of metallic platinum completely converted to the particles of PtO Upon oxidation, the shape of larger platinum particles in the Pt/HOPG-S2 sample did not change, although for the dispersed particles in the Pt/HOPG-S1 samples under these conditions, the h/d ratio increases. The reduction of oxide to metal particles on heating the Pt/HOPG-S1 sample in vacuum at 460°С is accompanied by an increase in the size of particles. Their shape became more round compared to the initial one. It was found that X-ray radiation affects the state of platinum in the oxidized sample by reducing the surface layer of PtO2 to PtO.  相似文献   

11.
Kinetics of the oxygen reduction reaction (orr) and the hydrogen evolution–oxidation reactions (her/hor) were studied on the Pt(111) and Pt(100) surfaces in 0.05 M H2SO4 containing Cl. The orr is strongly inhibited on the (100) surface modified by adsorbed Cl (Clad), and it occurs as a 3.5e reduction via solution phase peroxide formation. In the hydrogen adsorption (Hupd) potential region, the orr is even more inhibited, and corresponds only to a 2 e reduction at the negative potential limit where the electrode is covered by one monolayer of Hupd and some (unknown) amount of Clad. On the Pt(111)---Clad surface, the orr is inhibited relatively little (in addition to that caused by strong bisulfate anion adsorption on this surface), and the reaction pathway is the same as in Cl free solution. The kinetics of the hor on Pt(111) are the same in pure solution and in a solution containing Cl, since Clad does not affect platinum sites required for the breaking of the H---H bond. A relatively large inhibition of the hor is observed on the (100) surface, implying that strongly adsorbed Clad is present on the surface even near 0 V.  相似文献   

12.
We present a combined electrochemical and in situ STM study of the surface structure of Pt(100) single crystal electrodes in dependence on the cooling atmosphere after flame annealing. The following cooling conditions were applied: Ar/H2 and Ar/CO mixtures (reductive atmosphere), argon (inert gas) and air (oxidative atmosphere). Surface characterization by in-situ STM allows deriving direct correlations between surface structure and macroscopic electrochemical behavior of the respective platinum electrodes. We investigated the influence of defect type and density as well as long range surface order on the kinetics of the CO electro-oxidation reaction. The defect-rich Pt(100) electrodes as cooled in air or Ar, and followed by immersion in the hydrogen adsorption region display higher activities as compared to the rather smooth Pt(100)-(1 × 1) electrode cooled in an Ar/H2-atmosphere.  相似文献   

13.
The catalytic oxidation of glucose on Pt electrodes modified by adsorbed metals was studied in 1 M HClO4 by linear sweep voltammetry. The adsorbed metals (denoted as Mad, such as Biad and Pbad) formed on Pt in the potential region more positive than the reversible potential of an M=+/Mo couple, lead to a marked increase in the anodic c?urrent of glucose by about one order of magnitude. The catalytic activity depends on the surface coverage by the Mad. The strongly adsorbed species of lactone type, which are responsible for blocking the successive oxidation, are formed on the electrode surface in the anodic processes of glucose on a bare Pt electrode. The formation of such poisonous species is accelerated in the presence of adsorbed hydrogen on Pt. The effects of Mad were discussed on the basis that Mad plays its major role on the Pt electrode surface in removal of the adsorbed hydrogen which initiates the formation of the poisonous species.  相似文献   

14.
This study aims to understand the effects of functional agents such as capping agents, stabilizers, surfactants and additives in shape-controlled synthesis of nanomaterials. The well-defined Pt(100) single crystal surface was used as a model to investigate its interaction with citrate, a capping agent that is often used in shape-controlled synthesis of nanomaterials. It demonstrated that, through a systematic study of electrochemical cyclic voltammetry, the presence of citrate in solution could increase the current peak density of hydrogen adsorption at high potential (j p,L ), while decrease proportionally the current peak density of hydrogen adsorption at low potential (j p,S ). Furthermore, the increase of citrate concentration shifted negatively the peak potentials (E p,L and E p,S ) of both j p,L and j p,S . The results indicated that the interaction of citrate with Pt(100) surface could induce increasing the (100) surface domains of two-dimensional long range order (2D-(100)), and decreasing the (100) surface domains of one-dimensional short range order (1D-(100)). It also revealed that the interaction of citrate with Pt(100) surface could stabilize the 2D-(100) structure. The findings gained in this study implied that the citrate may lead to form stable 2D-(100) domains on Pt nanoparticles upon the shape-controlled synthesis of Pt nanomaterials.  相似文献   

15.
A microporous platinum/fullerenes (Pt/C 60) counter electrode was prepared by using a facile rapid thermal decomposition method,and the quantum-dot sensitized solar cell (QDSSC) of Pt/C 60-TiO 2-CdS-ZnS and Pt/C 60-TiO 2-CdTe-ZnS was fabrication.The technique forms a good contact between QDs and TiO 2 films.The photovoltaic performances of the as-prepared cells were investigated.The QDSSCs with Pt/C 60 counter electrode show high power conversion efficiency of 1.90% and 2.06%,respectively (under irradiation of a simulated solar light with an intensity of 100 mW cm 2),which is comparable to the one fabricated using conventional Pt electrode.  相似文献   

16.
The effect of the cooling atmosphere on the rate of CO adlayer oxidation on flame-annealed Pt(111) has been studied. Cooling of a flame-annealed Pt(111) electrode in air results in a higher amount of crystalline defects compared to Pt(111) cooled in a hydrogen–argon stream. Although the blank profiles in 0.5 M H2SO4 of Pt(111), cooled in air and under oxygen exclusion, are virtually identical, CO adlayer oxidation occurs at significantly lower overpotentials on the former electrode. Three voltammetric peaks are observed for subsaturated CO adlayer oxidation on Pt(111), cooled in Ar+H2 mixture, while only two peaks develop in the case of a Pt(111) surface cooled in air. Random crystalline defects, introduced via cooling of a flame-annealed Pt(111) in air, enhance CO adlayer oxidation, and apparently also suppress the third high-potential peak observed on a quasi-perfect (111) surface. The high sensitivity of the saturated CO adlayer oxidation to the presence of crystalline defects on Pt(111) can hence be used as a straightforward, sensitive, though qualitative method to assess the degree of crystalline order of the electrode.  相似文献   

17.
The role of the oxidation state of a platinum polycrystalline surface in the electrocatalytic oxidation of C1 to C4 primary alcohols has been studied by using electrochemical techniques, in situ FTIR spectroscopy and X-ray photoelectron spectroscopy. The results revealed that the oxidation state of the Pt surface plays a key role in the oxidation of primary alcohols, and demonstrated that the oxidation of C1 to C4 primary alcohols on a Pt electrode is controlled by the formation of surface oxides on the Pt electrode at different potentials. It was found that the dependence of the reaction process on the oxidation states of the platinum surface yielded similar features in the cyclic voltammogram for oxidation of different primary alcohols at a Pt electrode. According to the effects in the oxidation of primary alcohols, the surface oxides of platinum may be classified as active and poison species. The Pt surface oxides of higher oxidation states (Pt(OH)3 and PtO2) formed at potentials above 1.0 V (SCE) were identified as poison species, while other lower oxidation states of Pt surface oxides such as PtOH, Pt(OH)2 and PtO may be identified as the possible active species for primary alcohol oxidation.  相似文献   

18.
The stability of highly disperse 50 wt % Pt catalysts deposited on carbon supports with various porosity and morphology is tested in accelerated oxidative experiments in the potential range of 1–1.5 V (RHE) in 0.1 M HClO4 solution. The electrochemically active surface area of platinum (S Pt) is determined based on the charge of adsorbed hydrogen by the cyclic voltammetry (CVA) method. The specific activity per mass unit (the mass catalytic activity (MCA)) and the electrochemically active surface area of the active component (surface catalytic activity (SCA)) are determined in the oxygen electroreduction reaction (OERR) by the method of rotating disk electrode (RDE). It is shown that the catalyst degradation is mainly due to the growth of Pt particles and the corrosion of the carbon support. It is found that under these cycling conditions, the rate of the S Pt decline depends inversely on the cycle number throughout the cycling interval (up to 60000 cycles) for all catalysts, which points to the quadratic dependence of the degradation rate on S Pt. Two regions are revealed in the MCA and SCA dependences on the cycle number, In the first region (from 0 to 8–10 thousand cycles), a sharp decrease in MCA and SCA is observed for all catalysts, which can be associated with the restructuring or passivation of the Pt particle surface due to the oxide formation on oxidative cycling. In the second region, the relative stabilization of MCA and the linear increase in SCA are observed for all catalysts without exception. The linear increase in SCA is due to the growth of Pt particles and the size effect. It is shown that carbonization of the carbon support leads to enhancement of its cycling stability.  相似文献   

19.
Song  Qian  Li  Hui  Liu  Junji  Hu  Shi 《Journal of Solid State Electrochemistry》2021,25(10):2471-2478

Cyclic voltammetry (CV) is a powerful and popular electrochemical technique widely used to study the surface structure of materials through the electrochemical behaviors. Herein CV is utilized to study the electrochemical deposition of selenium (Se) on carbon black-supported Pt nanostructures. We synthesized carbon-loaded platinum nanoparticles (Pt/C) by microwave method and studied the electrochemical behavior of selenium on them. Through the experiment of changing the reverse potential, the corresponding relationship between the Se deposition peak and stripping peak was clarified and the deposition and stripping process of Se was proposed. Meanwhile, we synthesized cubic and octahedral nanocrystals of Pt, and used CV to study the Se deposition on these nanosctructures supported by carbon. It was found that the relative intensity of UPD peaks on Pt is different, as Ptcube@C is dominated by (100) and Ptoct@C electrode is dominated by (111) while Pt@C falls in between.

  相似文献   

20.
Carbon monoxide adsorbed on a smooth platinum electrode in the double-layer region was investigated in 1 M HClO4 solution by using in situ polarization modulation IR reflection spectroscopy and an electrochemical oxidation. From the electrochemical oxidation, the adsorbed CO could be distinguished to be comprised of stable and unstable adsorbed CO's. The unstable adsorbed CO constituted about of the adsorbed CO, and corresponded to linearly adsorbed CO, but the band intensity of the linearly adsorbed CO was not proportional to the amount of unstable adsorbed CO. The stable adsorbed CO constituted about ; it was one-site adsorbed, and was an IR-inactive species. It is presumed that the IR-inactive species is adsorbed on two Pt atoms with the C-O axis parallel to the electrode surface and one of the Pt atoms bound to two CO molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号