首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
This study is concerned with free and forced undamped purely nonlinear oscillators. First, the exact closed-form solution for free vibrations given in terms of the Ateb function is discussed. An insight is provided with respect to the period of vibrations and the harmonic content of the response. Then, forced purely nonlinear oscillators with an Ateb-type external excitation are considered. The exact solution for the forced response is obtained, the amplitude-frequency equation derived and frequency-response curves investigated. It is also shown how one can adjust the system parameters to cause a constant frequency/period of the forced response.  相似文献   

2.
In this paper free oscillators with a power-form restoring force and with a fractional derivative damping term are considered. An analytical approach based on the averaging method is adjusted to derive analytical expressions for the amplitude and phase of oscillations. Effects of the fractional-order derivative on the amplitude and frequency of oscillations are discussed in several examples, including a generalized van der Pol oscillator, purely nonlinear oscillators and a linear oscillator.  相似文献   

3.
On the Global Geometric Structure of the Dynamics of the Elastic Pendulum   总被引:1,自引:0,他引:1  
We approach the planar elastic pendulum as a singular perturbation of the pendulum to show that its dynamics are governed by global two-dimensional invariant manifolds of motion. One of the manifolds is nonlinear and carries purely slow periodic oscillations. The other one, on the other hand, is linear and carries purely fast radial oscillations. For sufficiently small coupling between the angular and radial degrees of freedom, both manifolds are global and orbitally stable up to energy levels exceeding that of the unstable equilibrium of the system. For fixed value of coupling, the fast invariant manifold bifurcates transversely to create unstable radial oscillations exhibiting energy transfer. Poincaré sections of iso-energetic manifolds reveal that only motions on and near a separatrix emanating from the unstable region of the fast invariant manifold exhibit energy transfer.  相似文献   

4.
A nonlinear time-domain simulation model for predicting two-dimensional vortex-induced vibration (VIV) of a flexibly mounted circular cylinder in planar and oscillatory flow is presented. This model is based on the utilization of van der Pol wake oscillators, being unconventional since wake oscillators have typically been applied to steady flow VIV predictions. The time-varying relative flow–cylinder velocities and accelerations are accounted for in deriving the coupled hydrodynamic lift, drag and inertia forces leading to the cylinder cross-flow and in-line oscillations. The system fluid–structure interaction equations explicitly contain the time-dependent and hybrid trigonometric terms. Depending on the Keulegan–Carpenter number (KC) incorporating the flow maximum velocity and excitation frequency, the model calibration is performed, entailing a set of empirical coefficients and expressions as a function of KC and mass ratio. Parametric investigations in cases of varying KC, reduced flow velocity, cylinder-to-flow frequency ratio and mass ratio are carried out, capturing some qualitative features of oscillatory flow VIV and exploring the effects of system parameters on response prediction characteristics. The model dependence of hydrodynamic coefficients on the Reynolds number is studied. Discrepancies and limitations versus advantages of the present model with different feasible solution scenarios are illuminated to inform the implementation of wake oscillators as a computationally efficient prediction model for VIV in oscillatory flows.  相似文献   

5.
It is shown that the flexible spherical pendulum undergoes purely slow motions with master and slaved components. The family of slow motions is realized as a three-dimensional invariant manifold in phase space. This manifold is computed analytically by applying the method of geometric singular perturbations. This manifold is nonlinear and for all energy and angular momentum levels is characterized precisely by three PO (proper orthogonal) modes. Its submanifold of zero angular momentum is a two-dimensional invariant manifold; it is the geometric realization of a nonclassical nonlinear normal mode. This normal mode is characterized precisely by two PO modes. The slaved slow dynamics are characterized precisely by a single PO mode. The stability of the slow invariant manifold as well as interactions between fast and slow dynamics are considered.  相似文献   

6.
The present paper reports some interesting phenomena observed in the nonlinear dynamics of two self-excitedly coupled harmonic oscillators. The system under consideration consists of two mechanical oscillators coupled by the Rayleigh type self-exciting force. Both autonomous and nonautonomous cases for weakly coupled systems are analyzed. When the natural frequencies of the two oscillators are close to each other, only one mode of oscillation exists. As two modes of oscillations get locked to a single mode, the system is said to be in a mode-locked condition. Under a mode-locked condition, the oscillators can oscillate with only a single frequency. However, when two oscillators are sufficiently detuned, the mode-locking condition does not persist and two distinct modes of oscillations emerge. Under these circumstances, particularly when detuning is large, one of the oscillators, depending on the initial conditions, oscillates with much larger amplitude as compared to the other oscillator, and hence mode localization is observed. When one of the oscillators is subject to a harmonic excitation, at two different frequencies, termed here as the decoupling frequencies, the coupling between the oscillators is almost lost, resulting in almost zero response of the unexcited oscillator. Analytical and numerical results are presented to analyze the above mentioned phenomena. Some potential applications of the aforesaid phenomena are also discussed.  相似文献   

7.
The undamped, finite amplitude, periodic motion of a load supported symmetrically by arbitrary isotropic, elastic shear mountings is investigated. Conditions on the shear response function sufficient to guarantee periodic motions for finite shearing with arbitrary initial data are provided. Some general results applicable for all simple shearing oscillators in the class are derived and illustrated graphically. The mechanical response of the general nonlinear shearing oscillator is compared with the response of a certain linear oscillator of comparable design. As consequence, certain static and dynamic aspects of the motion of an arbitrary nonlinear oscillator supported by shear springs are compared with those of a simple, linear oscillator for which the response is well-known and readily determined for the same initial data. The effect of a finite static shear deformation on the frequency equation for superimposed, small amplitude vibrations of the load is examined. The general analysis is applied to a class of hyperelastic biological tissues; and the frequency relation for finite amplitude oscillations of a load supported by soft tissue is derived. The finite amplitude oscillatory shearing of a general isotropic elastic continuum is described; and three universal relations connecting the stress and the oscillatory shearing deformation for every isotropic elastic material are presented.  相似文献   

8.
蔡泽民  毕勤胜 《力学季刊》2019,40(3):478-487
当周期激励频率远小于系统固有频率时,会存在快慢耦合效应,与单项激励不同,参外联合激励不仅会导致快子系统平衡曲线和分岔行为的复杂化,也会产生一些特殊的非线性现象,为此,本文以两耦合Hodgkin-Huxley细胞模型为例,引入周期参外联合激励,探讨在频域不同尺度耦合时该系统的簇发振荡的特点及其分岔机制.通过建立相应的快慢子系统,得到慢变参数变化下的快子系统的各种分岔模式以及相应的分岔行为,结合转换相图,揭示耦合系统随激励幅值变化时的动力学行为及其机理.研究表明,在激励幅值较小时,系统表现为概周期振荡,两频率分别近似于快子系统平衡曲线由Hopf分岔引起的两稳定极限环的振荡频率.概周期解随激励幅值的增加进入簇发振荡,导致这些簇发振荡的主要原因是在慢变参数变化的部分区间内,存在唯一稳定的平衡曲线,使得系统的轨迹逐渐趋向该平衡曲线,产生沉寂态,并随着慢变参数的变化,由分岔进入激发态.同时,快子系统中参与簇发振荡的稳定吸引子随激励幅值的变化也会不同,导致不同形式的簇发振荡.另外,与单项激励下的情形不同,联合激励时快子系统的部分稳定吸引子掩埋在其它稳定吸引子内,从而失去对簇发振荡的影响.  相似文献   

9.
The dynamics of a system of coupled oscillators possessing strongly nonlinear stiffness and damping is examined. The system consists of a linear oscillator coupled to a strongly nonlinear, light attachment, where the nonlinear terms of the system are realized due to geometric effects. We show that the effects of nonlinear damping are far from being purely parasitic and introduce new dynamics when compared to the corresponding systems with linear damping. The dynamics is analyzed by performing a slow/fast decomposition leading to slow flows, which in turn are used to study transient instability caused by a bifurcation to 1:3 resonance capture. In addition, a new dynamical phenomenon of continuous resonance scattering is observed that is both persistent and prevalent for the case of the nonlinearly damped system: For certain moderate excitations, the transient dynamics “tracks” a manifold of impulsive orbits, in effect transitioning between multiple resonance captures over definitive frequency and energy ranges. Eventual bifurcation to 1:3 resonance capture generates the dynamic instability, which is manifested as a sudden burst of the response of the light attachment. Such instabilities that result in strong energy transfer indicate potential for various applications of nonlinear damping such as in vibration suppression and energy harvesting.  相似文献   

10.
张毅  韩修静  毕勤胜 《力学学报》2019,51(1):228-236
簇发振荡是自然界和科学技术中广泛存在的快慢动力学现象,其具有与通常的振荡显著不同的特性.根据不同的动力学机制可将其分为多种模式,例如,点-点型簇发振荡和点-环型簇发振荡等.叉型滞后簇发振荡是由延迟叉型分岔诱发的一类具有简单动力学特性的点-点型簇发振荡.研究以多频参数激励Duffing系统为例,旨在揭示一类与延迟叉型分岔相关的具有复杂动力学特性的簇发振荡,即串联式叉型滞后簇发振荡.考虑了一个参激频率是另一个的整倍数情形,利用频率转换快慢分析法得到了多频参数激励Duffing系统的快子系统和慢变量,分析了快子系统的分岔行为.研究结果表明,快子系统可以产生两个甚至多个叉型分岔点;当慢变量穿越这些叉型分岔点时,形成了两个或多个叉型滞后簇发振荡;这些簇发振荡首尾相接,最终构成了所谓的串联式叉型滞后簇发振荡.此外,分析了参数对串联式叉型滞后簇发振荡的影响.   相似文献   

11.
Natsiavas  S.  Verros  G. 《Nonlinear dynamics》1999,20(3):221-246
Dynamics of a class of strongly nonlinear single degree of freedom oscillators is investigated. Their common characteristic is that they possess piecewise linear damping properties, which can be expressed in a general asymmetric form. More specifically, the damping coefficient and a constant parameter appearing in the equation of motion are functions of the velocity direction. This class of oscillators is quite general and includes other important categories of mechanical systems as special cases, like systems with Coulomb friction. First, an analysis is presented for locating directly exact periodic responses of these oscillators to harmonic excitation. Due to the presence of dry friction, these responses may involve intervals where the oscillator is stuck temporarily. Then, an appropriate stability analysis is also presented together with some quite general bifurcation results. In the second part of the work, this analysis is applied to several example systems with piecewise linear damping, in order to reveal the most important aspects of their dynamics. Initially, systems with symmetric characteristics are examined, for which the periodic response is found to be symmetric or asymmetric. Then, dynamical systems with asymmetric damping characteristics are also examined. In all cases, emphasis is placed on investigating the low forcing frequency ranges, where interesting dynamics is noticed. The analytical predictions are complemented with results obtained by proper integration of the equation of motion, which among other responses reveal the existence of quasiperiodic, chaotic and unbounded motions.  相似文献   

12.
由于多时间尺度问题在实际工程系统中广泛存在,关于其复杂动力学行为及其产生机制的研究已成为当前国内外的热点课题之一.簇发振荡是多时间尺度系统复杂动力学行为的典型代表,而分岔延迟又是簇发振荡中的常见现象.本文为探讨非线性系统中分岔延迟所引发的簇发振荡的分岔机制,在一个三维混沌系统中引入参数激励,当激励频率远小于系统的固有频率时,系统产生了两时间尺度簇发振荡.将整个激励项看做慢变参数,激励系统转化为广义自治系统也即快子系统,分析快子系统平衡点的稳定性以及分岔条件,并运用快慢分析法和转换相图揭示了簇发振荡的动力学机理.文中考察了4组参数条件下系统的动力学行为,研究发现当慢变激励项周期性地通过分岔点时,系统产生了明显的超临界叉形分岔延迟行为,随着参数激励振幅的增大,分岔延迟的时间也逐渐延长,当这种延迟的动态行为终止于不同的参数区域时,导致系统轨线围绕不同稳定吸引子(平衡点,极限环)运动,从而得到了不同的簇发振荡行为.   相似文献   

13.
A bistable nonlinear energy sink conceived to mitigate the vibrations of host structural systems is considered in this paper. The hosting structure consists of two coupled symmetric linear oscillators (LOs), and the nonlinear energy sink (NES) is connected to one of them. The peculiar nonlinear dynamics of the resulting three-degree-of-freedom system is analytically described by means of its slow invariant manifold derived from a suitable rescaling, coupled with a harmonic balance procedure, applied to the governing equations transformed in modal coordinates. On the basis of the first-order reduced model, the absorber is tuned and optimized to mitigate both modes for a broad range of impulsive load magnitudes applied to the LOs. On the one hand, for low-amplitude, in-well, oscillations, the parameters governing the bistable NES are tuned in order to make it functioning as a linear tuned mass damper (TMD); on the other, for high-amplitude, cross-well, oscillations, the absorber is optimized on the basis of the invariant manifolds features. The analytically predicted performance of the resulting tuned bistable nonlinear energy sink (TBNES) is numerically validated in terms of dissipation time; the absorption capabilities are eventually compared with either a TMD and a purely cubic NES. It is shown that, for a wide range of impulse amplitudes, the TBNES allows the most efficient absorption even for the detuned mode, where a single TMD cannot be effective.  相似文献   

14.
A methodology is first presented for analyzing long time response of periodically exited nonlinear oscillators. Namely, a systematic procedure is employed for determining periodic steady state response, including harmonic and superharmonic components. The stability analysis of the located periodic motions is also performed, utilizing results of Froquet theory. This methodology is then applied to a special class of two degree of freedom nonlinear oscillators, subjected to harmonic excitation. The numberical results presented in the second part of this study illustrate effects caused by the interaction of the modes as well as effects of the nonlinearities on the steady state response of these oscillators. In addition, sequences of bifurcations are analyzed for softening systems, leading to unbounded response of the model examined. Finally, the importance of higher harmonics on the response of systems with strongly nonlinear characteristics is investigated.  相似文献   

15.
The present work is motivated by the well known stabilizing effect of parametric excitation of some dynamical systems such as the inverted pendulum. The possibility of suppressing wing flutter via parametric excitation along the plane of highest rigidity in the neighborhood of combination resonance is explored. The nonlinear equations of motion in the presence of incompressible fluid flow are derived using Hamilton's principle and Theodorsen's theory for modeling aerodynamic forces. In the presence of air flow, the bending and torsion modes possess nearly the same frequency. Under parametric excitation and in the absence of air flow, each mode oscillates at its own natural frequency. In the neighborhood of combination resonance, the nonlinear response is determined using the multiple scales method at the critical flutter speed and at slightly higher airflow speed. The domains of attraction and bifurcation diagrams are obtained to reveal the conditions under which the parametric excitation can provide stabilizing effect. The basins of attraction for different values of excitation amplitude reveal the stabilizing effect that takes place above a critical excitation level. Below that level, the response experiences limit cycle oscillations, cascade of period doubling, and chaos. For flow speed slightly higher than the critical flutter speed, the response experiences a train of spikes, known as ‘firing,’ a term that is borrowed from neuroscience, followed by ‘refractory’ or recovery effect, up to an excitation level above which the wing is stabilized. The results of the multiple scales method are verified using numerical simulation of the original nonlinear differential equations.  相似文献   

16.
Inspired by the use of fast singular limits in time-parallel numerical methods for a single fast frequency, we consider the limiting, nonlinear dynamics for a system of partial differential equations when two fast, distinct time scales are present. First-order slow equations are derived via the method of multiple time scales when the two small parameters are related by a rational power. We find that the resultant system depends only on the relationship of the two fast time scales, i.e. which fast time is fastest? Using the theory of cancellation of fast oscillations, we show that with the appropriate assumptions on the nonlinear operator of the full system, this reduced slow system is exactly that which the solution will converge to if each asymptotic limit is considered sequentially. The same result is also obtained via the method of renormalization. The specific example of the rotating, stratified Boussinesq equations is explored in detail, indicating that the most common distinguished limit of this system—quasi-geostrophy, is not the only limiting asymptotic system.  相似文献   

17.
A nonlinear model relating the imposed motion of a circular cylinder, submerged in a fluid flow, to the transverse force coefficient is presented. The nonlinear fluid system, featuring vortex shedding patterns, limit cycle oscillations and synchronisation, is studied both for swept sine and multisine excitation. A nonparametric nonlinear distortion analysis (FAST) is used to distinguish odd from even nonlinear behaviour. The information which is obtained from the nonlinear analysis is explicitly used in constructing a nonlinear model of the polynomial nonlinear state-space (PNLSS) type. The latter results in a reduction of the number of parameters and an increased accuracy compared to the generic modelling approach where typically no such information of the nonlinearity is used. The obtained model is able to accurately simulate time series of the transverse force coefficient over a wide range of the frequency–amplitude plane of imposed cylinder motion.  相似文献   

18.
In this work, the authors seek to develop an analytical framework to understand the influence of noise on an array of micro-scale oscillators with special attention to the phenomenon of intrinsic localized modes (ILMs). It was recently shown by one of the authors and co-workers (Dick et al. in Nonlinear Dyn. 54:13, 2008) that ILMs can be realized as nonlinear vibration modes. Building on this work, it is shown here that white noise excitation, by itself, is unable to produce ILMs in an array of coupled nonlinear oscillators. However, in the case of an array subjected to a combined deterministic and random excitation, the obtained numerical results indicate the existence of a threshold noise strength beyond which the ILM at one location in attenuated whilst the localization in strengthened at another location in the array. The numerical results further motivate the formulation of a general analytical framework wherein the Fokker–Planck equation is derived for a typical coupled oscillator cell of the array subjected to a combined white noise and deterministic excitation. With a set of approximations, the moment evolution equations are derived from the Fokker–Planck equation and they are numerically solved. These solutions indicate that once a localization event occurs in the array, a random excitation with noise strength above a threshold value contributes to the sustenance of the event. It is also observed that an excitation with a higher noise strength results in enhanced response amplitudes for oscillators in the center of the array. The efforts presented in this paper, in addition to providing an analytical framework for developing a fundamental understanding of the influence of white noise on the dynamics of coupled oscillator arrays, suggest that noise may be potentially used to manipulate the formation and persistence of ILMs in such arrays. Furthermore, the occurrence of enhanced response amplitudes due to an excitation with a high noise strength indicates that the framework may also be used to investigate stochastic resonance-type phenomena in coupled arrays of nonlinear oscillators including micro-scale oscillator arrays.  相似文献   

19.
In this work, we study the nonlinear oscillations of mechanical systems resting on a (unilateral) elastic substrate reacting in compression only. We consider both semi-infinite cables and semi-infinite beams, subject to a constant distributed load and to a harmonic displacement applied to the finite boundary. Due to the nonlinearity of the substrate, the problem falls in the realm of free-boundary problems, because the position of the points where the system detaches from the substrate, called Touch Down Points (TDP), is not known in advance. By an appropriate change of variables, the problem is transformed into a fixed-boundary problem, which is successively approached by a perturbative expansion method. In order to detect the main mechanical phenomenon, terms up to the second order have to be considered. Two different regimes have been identified in the behaviour of the system, one below (called subcritical) and one above (called supercritical) a certain critical excitation frequency. In the latter, energy is lost by radiation at infinity, while in the former this phenomenon does not occur and various resonances are observed instead; their number depends on the statical configuration around which the system performs nonlinear oscillations.  相似文献   

20.
For a weakly nonlinear oscillator, the frequency domain Volterra kernels, often called the generalized frequency response functions, can provide accurate analysis of the response in terms of amplitudes and frequencies, in a transparent algebraic way. However, a Volterra series representation based analysis will become void for nonlinear oscillators that exhibit subharmonics, and the problem of finding a solution in this situation has mainly been treated by traditional analytical approximation methods. In this paper, a novel method is developed, by introducing a frequency domain subharmonic kernel representation for subharmonic systems subject to a single tone excitation frequency, to allow the advantages and the benefits associated with the traditional frequency domain representations to be applied to severely nonlinear systems that exhibit subharmonic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号