首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The dissociative recombination (DR) process of NH4+ and ND4+ molecular ions with free electrons has been studied at the heavy-ion storage ring CRYRING (Manne Siegbahn Laboratory, Stockholm University). The absolute cross sections for DR of NH4+ and ND4+ in the collision energy range 0.001-1 eV are reported, and thermal rate coefficients for the temperature interval from 10 to 2000 K are calculated from the experimental data. The absolute cross section for NH4+ agrees well with earlier work and is about a factor of 2 larger than the cross section for ND4+. The dissociative recombination of NH4+ is dominated by the product channels NH3+H (0.85+/-0.04) and NH2+2H (0.13+/-0.01), while the DR of ND4+ mainly results in ND3+D (0.94+/-0.03). Ab initio direct dynamics simulations, based on the assumption that the dissociation dynamics is governed by the neutral ground-state potential energy surface, suggest that the primary product formed in the DR process is NH3+H. The ejection of the H atom is direct and leaves the NH3 molecule highly vibrationally excited. A fraction of the excited ammonia molecules may subsequently undergo secondary fragmentation forming NH2+H. It is concluded that the model results are consistent with gross features of the experimental results, including the sensitivity of the branching ratio for the three-body channel NH2+2H to isotopic exchange.  相似文献   

2.
The dissociative recombination of Na(+)(D(2)O) ion has been studied at the heavy-ion storage ring CRYRING (Manne Siegbahn Laboratory, Stockholm University). The cross section has been measured as a function of center-of-mass energy ranging from 1 meV to 0.1 eV and found to have an E(-1.37) dependence. The rate coefficient has been deduced to be (2.3+/-0.32)x10(-7)(T(e)/300)(-0.95+/-0.01) cm(3) s(-1) for T(e)=50-1000 K. The branching ratios have been measured at 0 eV. Of the four energetically accessible dissociation channels, three channels are found to occur although the channel that breaks the weak Na(+)-D(2)O bond is by far dominant.  相似文献   

3.
Anions of fullerenes and small carbon clusters C n - have been stored in the storage ring ASTRID and observed decays on a millisecond time scale are interpreted as electron emission from metastable excited states. For the fullerenes, the fast decay is caused by thermionic emission, quenched by radiative cooling. The observed decay times are longest for the magic numbers n = 50, 60, reflecting a reduction of the thermal radiation due to the electronic shell structure. This statistical interpretation is supported by experiments on thermionic emission from C 60 - molecules heated by a Nd:YAG laser pulse. For anions of small carbon clusters (n = 2 - 9) there is a metastable component for n = 2 and for odd n but no metastability on a millisecond time scale for even n. The excited states are suggested to be quartet states decaying by Auger emission.  相似文献   

4.
Dissociative recombination of vibrationally relaxed H2O+ ions with electrons has been studied in the heavy-ion storage ring CRYRING. Absolute cross-sections have been measured for collision energies between 0 eV and 30 eV. The energy dependence of the cross-section below 0.1 eV is found to be much steeper than the E-1 behaviour associated with the dominance of the direct recombination mechanism. Resonant structures found at 4 eV and 11 eV have been attributed to the electron capture to Rydberg states converging to electronically excited ionic states. Complete branching fractions for all dissociation channels have been measured at a collision energy of 0 eV. The dissociation process is dominated by three-body H + H + O breakup that occurs with a branching ratio of 0.71.  相似文献   

5.
Two-color (1 + 1') REMPI mass spectra of o-, m- and p-fluorophenol.ammonia (1 ration) clusters were measured with a long delay time between excitation and ionization lasers. The appearance of NH(4)(NH(3))(n-1)(+) with 100 ns delay after exciting the S(1) state is a strong indication of generation of long-lived species via S(1). In analogy with the phenol.ammonia clusters, we conclude that an excited state hydrogen transfer reaction occurs in o-, m- and p-fluorophenol.ammonia clusters. The S(1)-S(0) transition of o-, m- and p-fluorophenol.ammonia (1 : 1) clusters were measured by the (1 + 1') REMPI spectra, while larger (1 ration) cluster (n = 2-4) were observed by monitoring the long-lived NH(4)(NH(3))(n-1) clusters action spectra. The vibronic structures of m- and p-fluorophenol.ammonia clusters are assigned based on vibrational calculations in S(0). The o-fluorophenol.ammonia (1 : 1) cluster shows an anharmonic progression that is analyzed by a one-dimensional internal rotational motion of the ammonia molecule. The interaction between the ammonia molecule and the fluorine atom, and its change upon electronic excitation are suggested. The broad action spectra observed for the o-fluorophenol.ammonia (1 : n) cluster (n>== 2) suggest the excited state hydrogen transfer is faster than in m- and p-fluorophenol.ammonia clusters. The different reaction rates between o-, m- and p-fluorophenol.ammonia clusters are found from comparison between the REMPI and action spectra.  相似文献   

6.
Dissociative multiphoton ionization of NO2 studied by time-resolved imaging   总被引:1,自引:0,他引:1  
We have studied dissociative multiphoton ionization of NO2 by time-resolved velocity map imaging in a two-color pump-probe experiment using the 400 and 266 nm harmonics of a regeneratively amplified titanium-sapphire laser. We observe that most of the ion signal appears as NO+ with approximately 0.28 eV peak kinetic energy. Approximately 600 fs period oscillations indicative of wave packet motion are also observed in the NO+ decay. We attribute the signal to two competitive mechanisms. The first involving three-photon 400 nm absorption followed by dissociative ionization of the pumped state by a subsequent 266 nm photon. The second involving one-photon 400 nm absorption to the 2B2 state of NO2 followed by two-photon dissociative ionization at 266 nm. This interpretation is derived from the observation that the total NO+ ion signal exhibits biexponential decay, 0.72 exp(-t/90+/-10)+0.28 exp(-t/4000+/-400), where t is the 266 nm delay in femtoseconds. The fast decay of the majority of the NO+ signal suggests a direct dissociation via the bending mode of the pumped state. .  相似文献   

7.
The existing techniques for the calculation of the dissociative recombination (DR) of electrons and molecular ions were compared. The advantages of the method of multichannel quantum defect (MQD), in which equations are formulated directly for the T-matrix of collisions and the unitarity of the scattering S-matrix is thus ensured, were demonstrated. The effect of molecular rotation and of the nonadiabatic electron-rotation coupling on the e + H2 + , H* + H reaction was investigated. A procedure was suggested based on the use of the adiabatic approximation (with respect to the nuclear rotation) in the near-threshold area while taking into account the contributions of the excited vibronic states of the Rydberg complex formed in an intermediate stage of the reaction. It is notable that the partial rate constants (and the corresponding cross-sections) arc very sensitive to the initial rotation excitation. However, the temperature-averaged rate constants under equilibrium conditions are only slightly affected by rotation.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1336–1348, June, 1996.  相似文献   

8.
To a first approximation, the perturbation theory yields an explicit analytical expression for the cross section of the dissociative recombination of electrons with molecular hydrogen ions. The possible nonadiabatic transitions during the separation of the nuclei which lead to the appearance of H++H, H(1s)+H(n=2), H(1s)+H(n=3) in finite reaction channels were considered. Numerical results are presented for the cross sections of direct and reverse reactions. The expression =4. 2 · 10–8 T–1/2 cm3/sec2 was obtained for the recombination rate at low temperatures; this expression is in agreement with known results. Several general details of the calculation and their possible implications for the case of heavy molecular ions are discussed.  相似文献   

9.
Vacuum ultraviolet (VUV) dissociative photoionization of isoprene in the energy region 8.5–18 eV was investigated with photoionization mass spectroscopy (PIMS) using synchrotron radiation (SR). The ionization energy (IE) of isoprene as well as the appearance energies (AEs) of its fragment ions C5H7+, C5H5+, C4H5+, C3H6+, C3H5+, C3H4+, C3H3+ and C2H3+ were determined with photoionization efficiency (PIE) curves. The dissociation energies of some possible dissociation channels to produce those fragment ions were also determined experimentally. The total energies of C5H8 and its main fragments were calculated using the Gaussian 03 program and the Gaussian‐2 method. The IE of C5H8, the AEs for its fragment ions, and the dissociation energies to produce them were predicted using the high‐accuracy energy model. According to our results, the experimental dissociation energies were in reasonable agreement with the calculated values of the proposed photodissociation channels of C5H8. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
《Chemical physics》1987,115(1):79-91
Dissociation spectra of NH3 clusters have been recorded using a cw CO2 laser. For the dimer two absorption bands have been found at 979 and 1004 cm−1, which originate from the excitation of two non-equivalent NH3 molecules. A tunneling motion is held responsible for the observed structure on one of these bands. The symmetry group of the NH3 dimer is presented considering the tunneling motion solely. Heavier NH3 clusters dissociate at frequencies between 1020 and 1100 cm−1. The dissociation spectrum of the SiH4-NH3 complex shows one peak centered at 972.3 cm−1.  相似文献   

11.
The method of molecular dynamics is used to study the adsorption of from one to six ammonia molecules by water clusters composed of 50 molecules. The adsorption of NH3 molecules markedly increases the IR absorption spectrum intensity, substantially decreases emission power in the frequency range of 0 ≤ ω ≤ 3500 cm?1, and transforms a continuous reflectance spectrum into a banded one. A rough surface formed by adsorbed ammonia molecules reduces the absorption coefficient and refractive index of the system of water-ammonia clusters in the entire frequency range. Adsorption of ammonia molecules by water clusters greatly diminishes the number of electrons that are active with respect to electromagnetic radiation.  相似文献   

12.
Nitrogen 1s (N 1s) core-to-Rydberg excitation spectra of hydrogen-bonded clusters of ammonia (AM) have been studied in the small cluster regime of beam conditions with time-of-flight (TOF) fragment-mass spectroscopy. By monitoring partial-ion-yield spectra of cluster-origin products, "cluster" specific excitation spectra could be recorded. Comparison of the "cluster" band with "monomer" band revealed that the first resonance bands of clusters corresponding to N 1s → 3sa(1)/3pe of AM monomer are considerably broadened. The changes of the experimental core-to-Rydberg transitions ΔFWHM (N 1s → 3sa(1)/3pe) = ~0.20/~0.50 eV compare well with the x ray absorption spectra of the clusters generated by using density functional theory (DFT) calculation. The broadening of the core-to-Rydberg bands in small clusters is interpreted as being primarily due to the splitting of non-equivalent core-hole N 1s states caused by both electrostatic core-hole and hydrogen-bonding (H(3)N···H-NH(2)) interactions upon dimerization. Under Cs dimer configuration, core-electron binding energy of H-N (H-donor) is significantly decreased by the intermolecular core-hole interaction and causes notable redshifts of core-excitation energies, whereas that of lone-pair nitrogen (H-acceptor) is slightly increased and results in appreciable blueshifts in the core-excitation bands. The result of the hydrogen-bonding interaction strongly appears in the n-σ* orbital correlation, destabilizing H-N donor Rydberg states in the direction opposite to the core-hole interaction, when excited N atom with H-N donor configuration strongly possesses the Rydberg component of anti-bonding σ* (N-H) character. Contributions of other cyclic H-bonded clusters (AM)(n) with n ≥ 3 to the spectral changes of the N 1s → 3sa(1)/3pe bands are also examined.  相似文献   

13.
Electronic and geometrical structures of iron clusters with associative (FeNO, Fe2NO, Fe3NO, Fe4NO, Fe5NO, and Fe6NO) and dissociative (OFeN, OFe2N, OFe3N, OFe4N, OFe5N, and OFe6N) attachments of NO, as well as the corresponding singly negatively and positively charged ions, are computed using density functional theory with generalized gradient corrections. Both types of isomers are found to be stable and no spontaneous dissociation was observed during the geometry optimizations. The ground states correspond to dissociative attachment of NO for all iron clusters Fe(n), except for Fe and Fe+. All of the OFe(n)N clusters have ferrimagnetic ground states, except for OFe2N, OFe2N-, OFe4N, and OFe4N-, which prefer the ferromagnetic coupling. In the ferrimagnetic states, the excess spin density at one iron atom couples antiferromagnetically to the excess spin densities of all other iron atoms. Relative to the high-spin Fe(n) ground state, the lowest energy ferrimagnetic state quenches the total magnetic moments of iron clusters by 7, which is to be compared with a reduction in the magnetic moment of one in the lowest energy ferromagnetic states. Dissociation of NO on the iron clusters has a pronounced impact on the energetics of reactions; the Fe(n)NO+CO-->Fe(n)N+CO2 channels are exothermic while the OFe6N+CO--> Fe6N+CO2 channels are nearly thermoneutral.  相似文献   

14.
Electron-ion-ion coincidence measurements carried out at discrete resonances near the N 1s threshold in ammonia are reported. The measured coincidence spectra show clear alignment of the molecule upon resonant core-electron excitation. The coincidence data are analyzed to extract information about the molecule in the excited state by simulating the alignment and the dissociation processes. Dynamic changes in molecular geometry are found as the photon energy is scanned through the N 1s-->4a(1) resonance, whereas for the N 1s-->2e state the geometry and kinetic energy released upon dissociation remain unchanged. The alignment of the core-excited molecules is found to be preserved even in two-step dissociation processes.  相似文献   

15.
Very low pressure vapor phase pyrolysis (flash thermolysis) of four-membered ring compounds was followed by microwave spectroscopic detection of the reaction products. The molecules studied included substituted cyclobutanes, thietanes, oxetane and azetidine. Microwave spectroscopy is well suited not only to observe stable reaction products but also to detect unstable species formed during pyrolysis. The investigation provided a wealth of information on typical decomposition patterns during pyrolysis of four-membered ring compounds. In addition, new methods were found for producing some unstable molecules with improved efficiency.  相似文献   

16.
We have carried out high-resolution inelastic x-ray scattering measurements of the excitations of lithium dissolved in ammonia. The incident x-ray energy was 21.6 keV and the resolution was about 2 meV. Several different excitations are observed in the energy range of 0-60 meV (0-500 cm(-1)). In addition to acoustic phonons at low energies, we see excitations that are associated with vibrations of Li(NH3)4+ complexes. We examined these excitations as a function of momentum transfer, lithium concentration, temperature, and state of the system (solid versus liquid). Data are compared with Hartree-Fock and density-functional theory calculations of the excitations of this complex, which agree well with the measured excitation energies.  相似文献   

17.
Self-consistent Kohn–Sham density functional calculations have been carried out to study the structure of the ammonia dimer. The local-density approximation yields unusually large binding energy and short internitrogen distance compared with the experimental and more accurate theoretical data. The results from the Becke–Perdew gradient-corrected functionals are generally in good agreement with those at the SCF MP 2 level when the geometry is fully optimized with various large basis sets. With our best estimation, the staggered quasi-linear structure (Cs) is 0.6 kcal/mol lower in energy than the symmetric cyclic one (C2h). The hydrogen-bonded N—H bond in the staggered quasi-linear structure is found to be 0.008 Å longer than the N—H bond in ammonia. In our calculations, we could not find the minima on the energy surface corresponding to the two asymmetric cyclic structures suggested by microwave spectra and coupled pair functional calculations. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
The dissociative photoionization studies have been performed for a set of dihalomethane CH(2)XY (X,Y = Cl, Br, and I) molecules employing the threshold photoelectron photoion coincidence (TPEPICO) technique. Accurate dissociation onsets for the first and second dissociation limits have been recorded in the 10-13 eV energy range, and ionization potentials have been measured for these compounds. By using our experimental dissociation onsets and the known heat of formation of CH(2)Cl(2) molecule, it has been possible to derive the 0 and 298 K heats of formation of all six neutral dihalomethanes as well as their ionic fragments, CH(2)Cl(+), CH(2)Br(+), and CH(2)I(+), to a precision better than 3 kJ/mol. These new measurements serve to fill the lack of reliable experimental thermochemical information on these molecules, correct the old literature values by up to 19 kJ/mol, and reduce their uncertainties. From our thermochemical results it has also been possible to derive a consistent set of bond dissociation energies for the dihalomethanes.  相似文献   

19.
Solutions of monodisperse monolayer-protected clusters (MPCs) of gold can be used as multivalent redox mediators in electrochemical experiments due to their quantized double-layer charging properties. We demonstrate their use in scanning electrochemical microscopy (SECM) experiments wherein the species of interest (up to 2-electron reduction or 4-electron oxidation from the native charge-state of the MPCs) is generated at the tip electrode, providing a simple means to adjust the driving force of the electron transfer (ET). Approach curves to perfectly insulating (Teflon) and conducting (Pt) substrates are obtained. Subsequently, heterogeneous ET between MPCs in 1,2-dichloroethane and an aqueous redox couple (Ce(IV), Fe(CN)63-/4-, Ru(NH3)63+, and Ru(CN)64-) is probed with both feedback and potentiometric mode of SECM operation. Depending on the charge-state of the MPCs, they can accept/donate charge heterogeneously at the liquid-liquid interface. However, this reaction is very slow in contrast to ET involving MPCs at the metal-electrolyte interface.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号