首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
While closed-loop control of quantum dynamics in the laboratory is proving to be broadly successful, the control mechanisms induced by the fields are often left obscure. Hamiltonian encoding (HE) was originally introduced as a method for understanding mechanisms in quantum dynamics in the context of computational simulations, based on access to the system wavefunction. As a step towards laboratory implementation of HE, this paper addresses the issues raised by the use of observables rather than the wavefunction in HE. The goal of laboratory based HE is to obtain an understanding of control mechanism through a sequence of systematic control experiments, whose collective information can identify the underlying control mechanism defined as the set of significant amplitudes connecting the initial and final states. Mechanism is determined by means of observing the dynamics of special sequences of system Hamiltonians encoded through the control field. The proposed algorithm can handle complex systems, operates with no recourse to dynamical simulations, and functions with limited understanding of the system Hamiltonian. As with the closed-loop control experiments, the HE control mechanism identification algorithm performs a new experiment each time the dynamical outcome from an encoded Hamiltonian is called for. This paper presents the basic HE algorithm in the context of physical systems described by a finite dimensional Hilbert space. The method is simulated with simple models, and the extension to more complex systems is discussed.  相似文献   

2.
Hamiltonian encoding (HE) methods have been used to understand mechanism in computational studies of laser controlled quantum systems. This work studies the principles for extending such methods to extract control mechanisms from laboratory data. In an experimental setting, observables replace the utilization of wavefunctions in computational HE. With laboratory data, HE gives rise to a set of quadratic equations for the interfering transition amplitudes, and the solution to the equations reveals the mechanistic pathways. The extraction of the mechanism from the system of quadratic equations raises questions of uniqueness and solvability, even in the ideal case without noise. Symmetries are shown to exist in the quadratic system of equations, which is generally overdetermined. Therefore, the mechanism is likely to be unique up to these symmetries. Numerical simulations demonstrate the concepts on simple model systems.  相似文献   

3.
Open-system quantum optimal control theory for optical control of the dynamics of a quantum system in contact with a dissipative bath is used here for explicitly time-dependent target operators, O(t). Global and local control strategies are combined in a novel algorithm by defining a set of time slices, into which the total control time is subdivided. The optimization then proceeds locally forward in time from subinterval to subinterval, while within each subinterval global control theory is used with iterative forward-backward propagation. The subintervals are connected by appropriate boundary conditions. In the present paper, all operators are represented in the basis of the eigenstates of the field-free system Hamiltonian. The algorithm is first applied to and its computational performance tested for a two-level system with energy and phase relaxation, and later extended to a many-level model. Model parameters are chosen to represent the IR pulse excitation of the adsorbate-surface stretch mode of vibrationally relaxing CO on a Cu(100) surface. Various time-dependent targets are formulated to achieve (i) population inversion, (ii) the creation of a wavepacket, and (iii) overtone excitation by "ladder climbing."  相似文献   

4.
A theory of quantum electron wavepacket dynamics that nonadiabatically couples with classical nuclear motions in intense optical fields is studied. The formalism is intended to track the laser-driven electron wavepackets in terms of the linear combination of configuration-state functions generated with ab initio molecular orbitals. Beginning with the total quantum Hamiltonian for electrons and nuclei in the vector potential of classical electromagnetic field, we reduce the Hamiltonian into a mixed quantum-classical representation by replacing the quantum nuclear momentum operators with the classical counterparts. This framework gives equations of motion for electron wavepackets in an intense laser field through the time dependent variational principle. On the other hand, a generalization of the Newtonian equations provides a matrix form of forces acting on the nuclei for nonadiabatic dynamics. A mean-field approximation to the force matrix reduces this higher order formalism to the semiclassical Ehrenfest theory in intense optical fields. To bring these theories into a practical quantum chemical package for general molecules, we have implemented the relevant ab initio algorithms in it. Some numerical results in the level of the semiclassical Ehrenfest-type theory with explicit use of the nuclear kinematic (derivative) coupling and the velocity form for the optical interaction are presented.  相似文献   

5.
The opportunities offered by utilizing time-independent Hamiltonian structure as controls are explored for manipulating quantum dynamics. Two scenarios are investigated using different manifestations of Hamiltonian structure to illustrate the generality of the concept. In scenario I, optimally shaped electrostatic potentials are generated to flexibly control electron scattering in a two-dimensional subsurface plane of a semiconductor. A simulation is performed showing the utility of optimally setting the individual voltages applied to a multi-pixel surface gate array in order to produce a spatially inhomogeneous potential within the subsurface scattering plane. The coherent constructive and destructive electron wave interferences are manipulated by optimally adjusting the potential shapes to alter the scattering patterns. In scenario II, molecular vibrational wave packets are controlled by means of optimally selecting the Hamiltonian structure in cooperation with an applied field. As an illustration of the concept, a collection (i.e., a level set) of dipole functions is identified where each member serves with the same applied electric field to produce the desired final transition probability. The level set algorithm additionally found Hamiltonian structure controls exhibiting desirable physical properties. The prospects of utilizing the applied field and Hamiltonian structure simultaneously as controls is also explored. The control scenarios I and II indicate the gains offered by algorithmically guided molecular or material discovery for manipulating quantum dynamics phenomenon.  相似文献   

6.
A mathematically rigorous reformulation of molecular quantum mechanics in terms of the particle density operator and a canonically conjugated phase field is given. Using a momentum cutoff, it is shown that the usual molecular Hamiltonian can be expressed in terms of the particle density operator and a rigorously defined phase operator. It is shown that this Hamiltonian converges strongly to the cutoff-free Hamiltonian. In spite of the fact that this Hamiltonian is of second order in the phase operators, all hitherto published expressions are not correct. Unfortunately, the correct formulation destroys the intuitive appeal of using the particle density operator as a coordinate for the many-body problems of quantum chemistry. Unless somebody provides an essential new and clever idea, we propose to resist the fascination of a local quantum field theory of molecular matter in terms of the particle density operator.  相似文献   

7.
A Hamiltonian coupling identification (HCI) technique is introduced to reveal the independent and cooperative roles of Hamiltonian matrix elements in determining the bound-state energies of quantum systems. The HCI technique operates by encoding each Hamiltonian matrix element with a unique modulation signal, producing a nonlinear signature in the energy eigenvalues that may be decoded to reveal the contributing coupling structure in the Hamiltonian. The HCI technique is capable of exploring the roles of Hamiltonian coupling structure within and beyond the convergence limits of standard perturbation theory expansions. The flexibility residing in the encoding and decoding processes may be exploited to tailor the analysis to meet the desired degree of sought-after information about the Hamiltonian coupling structure. HCI, based on a Fourier encoding and decoding scheme, is illustrated by extracting information on the role of coupling interactions in the potential matrix elements of several simple model systems.  相似文献   

8.
NMR anisotropic parameters such as dipolar couplings and chemical shifts are central to structure and orientation determination of aligned membrane proteins and liquid crystals. Among the separated local field experiments, the proton evolved local field (PELF) scheme is particularly suitable to measure dynamically averaged dipolar couplings and give information on local molecular motions. However, the PELF experiment requires the acquisition of several 2D datasets at different mixing times to optimize the sensitivity for the complete range of dipolar couplings of the resonances in the spectrum. Here, we propose a new PELF experiment that takes the advantage of the Hadamard encoding (HE) to obtain higher sensitivity for a broad range of dipolar couplings using a single 2D experiment. The HE scheme is obtained by selecting the spin operators with phase switching of hard pulses. This approach enables one to detect four spin operators, simultaneously, which can be processed into two 2D spectra covering a broader range of dipolar couplings. The advantages of the new approach are illustrated for a U-(15)N NAL single crystal and the U-(15)N labeled single-pass membrane protein sarcolipin reconstituted in oriented lipid bicelles. The HE-PELF scheme can be implemented in other multidimensional experiments to speed up the characterization of the structure and dynamics of oriented membrane proteins and liquid crystalline samples.  相似文献   

9.
Constructing appropriate unitary matrix operators for new quantum algorithms and finding the minimum cost gate sequences for the implementation of these unitary operators is of fundamental importance in the field of quantum information and quantum computation. Evolution of quantum circuits faces two major challenges: complex and huge search space and the high costs of simulating quantum circuits on classical computers. Here, we use the group leaders optimization algorithm to decompose a given unitary matrix into a proper-minimum cost quantum gate sequence. We test the method on the known decompositions of Toffoli gate, the amplification step of the Grover search algorithm, the quantum Fourier transform, and the sender part of the quantum teleportation. Using this procedure, we present the circuit designs for the simulation of the unitary propagators of the Hamiltonians for the hydrogen and the water molecules. The approach is general and can be applied to generate the sequence of quantum gates for larger molecular systems.  相似文献   

10.
11.
A new method, here called thermal Gaussian molecular dynamics (TGMD), for simulating the dynamics of quantum many-body systems has recently been introduced [I. Georgescu and V. A. Mandelshtam, Phys. Rev. B 82, 094305 (2010)]. As in the centroid molecular dynamics (CMD), in TGMD the N-body quantum system is mapped to an N-body classical system. The associated both effective Hamiltonian and effective force are computed within the variational Gaussian wave-packet approximation. The TGMD is exact for the high-temperature limit, accurate for short times, and preserves the quantum canonical distribution. For a harmonic potential and any form of operator A?, it provides exact time correlation functions C(AB)(t) at least for the case of B, a linear combination of the position, x, and momentum, p, operators. While conceptually similar to CMD and other quantum molecular dynamics approaches, the great advantage of TGMD is its computational efficiency. We introduce the many-body implementation and demonstrate it on the benchmark problem of calculating the velocity time auto-correlation function for liquid para-hydrogen, using a system of up to N = 2592 particles.  相似文献   

12.
Quantum chemical solvation models usually rely on the equilibrium solvation condition and is thus not immediately applicable to the study of nonequilibrium solvation dynamics, particularly those associated with chemical reactions. Here we address this problem by considering an effective Hamiltonian for solution-phase reactions based on an electrostatic potential (ESP) representation of solvent dynamics. In this approach a general ESP field of solvent is employed as collective solvent coordinate, and an effective Hamiltonian is constructed by treating both solute geometry and solvent ESP as dynamical variables. A harmonic bath is then attached onto the ESP variables in order to account for the stochastic nature of solvent dynamics. As an illustration we apply the above method to the proton transfer of a substituted phenol-amine complex in a polar solvent. The effective Hamiltonian is constructed by means of the reference interaction site model self-consistent field method (i.e., a type of quantum chemical solvation model), and a mixed quantum/classical simulation is performed in the space of solute geometry and solvent ESP. The results suggest that important dynamical features of proton transfer in solution can be captured by the present approach, including spontaneous fluctuations of solvent ESP that drives the proton from reactant to product potential wells.  相似文献   

13.
A general approach to mapping a discrete quantum mechanical problem by a continuous Hamiltonian is presented. The method is based on the representation of the quantum number by a continuous action variable that extends from -infinity to infinity. The projection of this Hilbert space onto the set of integer quantum numbers reduces the Hamiltonian to a discrete matrix of interest. The theory allows the application of the semiclassical methods to discrete quantum mechanical problems and, in particular, to problems where quantum Hamiltonians are coupled to continuous degrees of freedom. The Herman Kluk semiclassical propagation is used to calculate the nonadiabatic dynamics for a model avoided crossing system. The results demonstrate several advantages of the new theory compared to the existing mapping approaches.  相似文献   

14.
A hierarchical electron-phonon coupling model is applied to describe the ultrafast decay of a photogenerated exciton at a donor-acceptor polymer heterojunction, via a vibronic coupling mechanism by which a charge-localized interfacial state is created. Expanding upon an earlier Communication [H. Tamura et al., J. Chem. Phys. 126, 021103 (2007)], we present a quantum dynamical analysis based on a two-state linear vibronic coupling model, which accounts for a two-band phonon bath including high-frequency C[Double Bond]C stretch modes and low-frequency ring torsional modes. Building upon this model, an analysis in terms of a hierarchical chain of effective modes is carried out, whose construction is detailed in the present paper. Truncation of this chain at the order n (i.e., 3n+3 modes) conserves the Hamiltonian moments (cumulants) up to the (2n+3)rd order. The effective-mode analysis highlights (i) the dominance of the high-frequency modes in the coupling to the electronic subsystem and (ii) the key role of the low-frequency modes in the intramolecular vibrational redistribution process that is essential in mediating the decay to the charge-localized state. Due to this dynamical interplay, the effective-mode hierarchy has to be carried beyond the first order in order to obtain a qualitatively correct picture of the nonadiabatic process. A reduced model of the dynamics, including a Markovian closure of the hierarchy, is presented. Dynamical calculations were carried out using the multiconfiguration time-dependent Hartree method.  相似文献   

15.
By means of the Jeener-Broekaert nuclear magnetic resonance pulse sequence, the proton spin system of a liquid crystal can be prepared in quasiequilibrium states of high dipolar order, which relax to thermal equilibrium with the molecular environment with a characteristic time (T1D). Previous studies of the Larmor frequency and temperature dependence of T1D in thermotropic liquid crystals, that included field cycling and conventional high-field experiments, showed that the slow hydrodynamic modes dominate the behavior of T1D, even at high Larmor frequencies. This noticeable predominance of the cooperative fluctuations (known as order fluctuations of the director, OFD) could not be explained by standard models based on the spin-lattice relaxation theory in the limit of high temperature (weak order). This fact points out the necessity of investigating the role of the quantum terms neglected in the usual high temperature theory of dipolar order relaxation. In this work, we present a generalization of the proton dipolar order relaxation theory for highly correlated systems, which considers all the spins belonging to correlated domains as an open quantum system interacting with quantum bath. As starting point, we deduce a formulation of the Markovian master equation of relaxation for the statistical spin operator, valid for all temperatures, which is suitable for introducing a dipolar spin temperature in the quantum regime, without further assumptions about the form of the spin-lattice Hamiltonian. In order to reflect the slow dynamics occurring in correlated systems, we lift the usual short-correlation-time assumption by including the average over the motion of the dipolar Hamiltonian together with the Zeeman Hamiltonian into the time evolution operator. In this way, we calculate the time dependence of the spin operators in the interaction picture in a closed form, valid for high magnetic fields, bringing into play the spin-spin interactions within the microscopic time scale. Then, by adopting the spin-temperature density operator to represent the collective state of the spin system, and removing the traditional hypothesis of high temperature, we deduce an expression for the first order quantum contribution to T1D (-1), in terms of spectral densities, with coefficients in form of spin traces. The properties that distinguish our result from the high-temperature T1D (-1) are as follows. (a) It is exclusively associated to cooperative fluctuations. (b) Because of its quantum character, it relies on both considering the lattice degrees of freedom quantum mechanically and including the spin-spin interactions in the microscopic time scale. With regard to the average dipolar Hamiltonian, only the nonsecular part plays a relevant role. (c) Associated with the structure of the spin operator involved in the quantum contribution, a term arises which is proportional to the number of spins in the correlated molecular domains, showing that the quantum contribution may be of macroscopic size in highly correlated systems. When applied to nematic liquid crystals, the new term exhibits the typical nu(-1/2) Larmor frequency dependence through the spectral density of the OFD, in consistence with the experimental results.  相似文献   

16.
The vibrational energy levels of the H(3)O-(2) anion have been calculated using a rigorous quantum dynamics method based on an accurate ab initio potential energy surface. The eigenvalue problem is solved using the two-layer Lanczos iterative diagonalization algorithm in a mixed grid/nondirect product basis set, where the system Hamiltonian is expressed in a set of orthogonal polyspherical coordinates. The lowest 312 vibrational energy levels in each inversion symmetry, together with a comparison of fundamental frequencies with previous quantum dynamics calculations, are reported. Finally, a statistical analysis of nearest level spacing distribution is carried out, revealing a strongly chaotic nature.  相似文献   

17.
A traditional quantum optimal control experiment begins with a specific physical system and seeks an optimal time-dependent field to steer the evolution towards a target observable value. In a more general framework, the Hamiltonian structure may also be manipulated when the material or molecular 'stockroom' is accessible as a part of the controls. The current work takes a step in this direction by considering the converse of the normal perspective to now start with a specific fixed field and employ the system's time-independent Hamiltonian structure as the control to identify an optimal form. The Hamiltonian structure control variables are taken as the system energies and transition dipole matrix elements. An analysis is presented of the Hamiltonian structure control landscape, defined by the observable as a function of the Hamiltonian structure. A proof of system controllability is provided, showing the existence of a Hamiltonian structure that yields an arbitrary unitary transformation when working with virtually any field. The landscape analysis shows that there are no suboptimal traps (i.e., local extrema) for controllable quantum systems when unconstrained structural controls are utilized to optimize a state-to-state transition probability. This analysis is corroborated by numerical simulations on model multilevel systems. The search effort to reach the top of the Hamiltonian structure landscape is found to be nearly invariant to system dimension. A control mechanism analysis is performed, showing a wide variety of behavior for different systems at the top of the Hamiltonian structure landscape. It is also shown that reducing the number of available Hamiltonian structure controls, thus constraining the system, does not always prevent reaching the landscape top. The results from this work lay a foundation for considering the laboratory implementation of optimal Hamiltonian structure manipulation for seeking the best control performance, especially with limited electromagnetic resources.  相似文献   

18.
To investigate the role of quantum effects in vibrational spectroscopies, we have carried out numerically exact calculations of linear and nonlinear response functions for an anharmonic potential system nonlinearly coupled to a harmonic oscillator bath. Although one cannot carry out the quantum calculations of the response functions with full molecular dynamics (MD) simulations for a realistic system which consists of many molecules, it is possible to grasp the essence of the quantum effects on the vibrational spectra by employing a model Hamiltonian that describes an intra- or intermolecular vibrational motion in a condensed phase. The present model fully includes vibrational relaxation, while the stochastic model often used to simulate infrared spectra does not. We have employed the reduced quantum hierarchy equations of motion approach in the Wigner space representation to deal with nonperturbative, non-Markovian, and nonsecular system-bath interactions. Taking the classical limit of the hierarchy equations of motion, we have obtained the classical equations of motion that describe the classical dynamics under the same physical conditions as in the quantum case. By comparing the classical and quantum mechanically calculated linear and multidimensional spectra, we found that the profiles of spectra for a fast modulation case were similar, but different for a slow modulation case. In both the classical and quantum cases, we identified the resonant oscillation peak in the spectra, but the quantum peak shifted to the red compared with the classical one if the potential is anharmonic. The prominent quantum effect is the 1-2 transition peak, which appears only in the quantum mechanically calculated spectra as a result of anharmonicity in the potential or nonlinearity of the system-bath coupling. While the contribution of the 1-2 transition is negligible in the fast modulation case, it becomes important in the slow modulation case as long as the amplitude of the frequency fluctuation is small. Thus, we observed a distinct difference between the classical and quantum mechanically calculated multidimensional spectra in the slow modulation case where spectral diffusion plays a role. This fact indicates that one may not reproduce the experimentally obtained multidimensional spectrum for high-frequency vibrational modes based on classical molecular dynamics simulations if the modulation that arises from surrounding molecules is weak and slow. A practical way to overcome the difference between the classical and quantum simulations was discussed.  相似文献   

19.
The surrogate Hamiltonian is a general scheme to simulate the many body quantum dynamics composed of a primary system coupled to a bath. The method has been based on a representative bath Hamiltonian composed of two-level systems that is able to mimic the true system-bath dynamics up to a prespecified time. The original surrogate Hamiltonian method is limited to short time dynamics since the size of the Hilbert space required to obtain convergence grows exponentially with time. By randomly swapping bath modes with a secondary thermal reservoir, the method can simulate quantum dynamics of the primary system from short times to thermal equilibrium. By averaging a small number of realizations converged values of the system observables are obtained avoiding the exponential increase in resources. The method is demonstrated for the equilibration of a molecular oscillator with a thermal bath.  相似文献   

20.
We explain how and under which conditions it is possible to obtain an efficient inversion of an entire sideband family of several hundred kHz using low-power, sideband-selective adiabatic pulses, and we illustrate with some experimental results how this framework opens new avenues in solid-state NMR for manipulating spin systems with wide spinning-sideband (SSB) manifolds. This is achieved through the definition of the criteria of phase and amplitude modulation for designing an adiabatic inversion pulse for rotating solids. In turn, this is based on a framework for representing the Hamiltonian of the spin system in an NMR experiment under magic angle spinning (MAS). Following earlier ideas from Caravatti et al. [J. Magn. Reson. 55, 88 (1983)], the so-called "jolting frame" is used, which is the interaction frame of the anisotropic interaction giving rise to the SSB manifold. In the jolting frame, the shift modulation affecting the nuclear spin is removed, while the Hamiltonian corresponding to the RF field is frequency modulated and acquires a spinning-sideband pattern, specific for each crystallite orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号