首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Attenuated total internal reflectance Fourier transform infrared, ATR-FTIR, spectroscopy was used to compare the water uptake and doping within polyelectrolyte multilayers made from poly(styrene sulfonate), PSS, and a polycation, either poly(allylamine hydrochloride), PAH, or poly(diallyldimethylammonium chloride), PDADMAC. Unlike PDADMA/PSS multilayers, whose water content depended on the solution ionic strength, PAH/PSS multilayers were resistant to doping by NaCl to a concentration of 1.2 M. Using (infrared active) perchlorate salt, the fraction of residual counterions in PDADMA/PSS and PAH/PSS was determined to be 3% and 6%, respectively. The free energy of association between the polymer segments, in the presence of NaClO4, was about 5 kJ mol-1 and -10 kJ mol-1, respectively, for PDADMA/PSS and PAH/PSS, indicating the relatively strong association between the polymer segments in the latter relative to the former. Varying the pH of the solution in contact with the PAH/PSS multilayer revealed a transition to a highly swollen state, interpreted to signal protonation of PAH under much more basic conditions than the pKa of the solution polymer. The increase in the multilayer pKa suggested an interaction energy for PAH/PSS in NaCl of ca. 16 kJ mol-1.  相似文献   

2.
With X-ray and neutron reflectivity, the structure and composition of polyelectrolyte multilayers from poly(allyl amine) (PAH) and poly(styrene sulfonate) (PSS) are studied as function of preparation conditions (salt concentration and solution temperature, T). The onset of a temperature effect occurs at 0.05 M NaCl (Debye length approximately 1 nm). At 1 M salt, the film thickness increases by a factor of 3 on heating the deposition solution from 5 to 60 degrees C. The PAH/PSS bilayer thickness is independent of the kind of salt (NaCl or KCl), yet its composition is different (more bound water for NaCl). At low T, the internal roughness is 33% of the bilayer thickness; it increases to 60% at high T. The roughening is accompanied by a total loss of bound water. At which temperature the roughening starts is a function of the kind of salt (50 degrees C for NaCl and 35 degrees C for KCl). The strong temperature dependence and the eventual loss of bound water molecules may be attributed to the hydrophobic force; however, there is an isotope effect, since the loss of bound water is less pronounced in the deuterated layers.  相似文献   

3.
The influence of a first (anchoring) layer and film treatment on the structure and properties of polyelectrolyte multilayer (PEM) films obtained from polyallylamine hydrochloride (PAH) and polysodium 4-styrenesulfonate (PSS) was studied. Branched polyethyleneimine (PEI) was used as an anchoring layer. The film thickness was measured by ellipsometry. Complementary X-ray reflectometry and AFM experiments were performed to study the change in the interfacial roughness. We found that the thickness of the PEM films increased linearly with the number of layers and depended on the presence of an anchoring PEI layer. Thicker films were obtained for multilayers having PEI as the first layer comparing to films having the same number of layers but consisting of PAH/PSS only. We investigated the wettability of PEM surfaces using direct image analysis of the shape of sessile water drops. Periodic oscillations in contact angle were observed. PAH-terminated films were more hydrophobic than films with PSS as the outermost layer. The effect of long time conditioning of PEM films in solutions of various pH's or salt (NaCl) concentrations was also examined. Salt or base solutions induced modification in wetting properties of the polyelectrolyte multilayers but had a negligible effect on the film thickness.  相似文献   

4.
Temperature- and pH-sensitive poly(N-isopropylacrylamide)?Cco-acrylic acid (pNIPAm-co-AAc) microgels were deposited on glass substrates coated with polyelectrolyte multilayers composed of the polycation poly(allylamine hydrochloride) (PAH) and the polyanion poly(sodium 4-styrenesulfonate) (PSS). The microgel density and structure of the resultant films were investigated as a function of: (1) the number of PAH/PSS layers (layer thickness); (2) the charge on the outer layer of the polyelectrolyte multilayer film; and (3) the pH of microgel deposition solution. The resultant films were studied by differential interference contrast optical microscopy, atomic force microscopy, and scanning electron microscopy. It was found that the coverage of the microgels on the surface was a complex function of the pH of the deposition solution, the charge on the outer layer of the polyelectrolyte thin film and the PAH/PSS layer thickness; although it appears that microgel charge plays the biggest role in determining the resultant surface coverage.  相似文献   

5.
The effect of solvent conditions on the growth of polyelectrolyte (PE) multilayer films comprising poly(allylamine hydrochloride) (PAH) and poly(styrenesulfonate sodium salt) (PSS) on planar substrates was investigated by means of surface plasmon resonance spectroscopy (SPRS), quartz crystal microbalance (QCM), and atomic force microscopy techniques. The solvent quality was varied by the addition of ethanol to the PE solutions used for deposition of the layers, thus tuning the relative strength of electrostatic and secondary intermolecular and intramolecular interactions. Experiments were performed with PE solutions both without added electrolyte and containing 0.5 M NaCl. Decreasing the solvent quality (i.e., increasing the amount of ethanol in the adsorption solution) resulted in a marked increase of both the multilayer film thickness and mass loading, as determined from the SPRS spectra and QCM frequency shifts, respectively. With the solution composition approaching the precipitation point, thick PAH/PSS films were formed due to the screening of the electrostatic intra- and interchain repulsions and enhanced hydrophobic interactions between the polyelectrolyte chains. However, the films formed from water/ethanol mixtures remained stable upon subsequent exposure to water or salt-containing solutions: no significant film desorption occurred after up to 24 h of exposure to water or 0.5 M NaCl solutions. In addition, the effect of postdeposition exposure to water/ethanol mixtures was investigated for PE multilayers assembled from aqueous solutions. In this case, the optical thickness of the films was determined during exposure to water/ethanol mixtures, and instead of swelling, the polyelectrolyte films collapse to the surface as a result of the unfavorable segment-solvent interactions.  相似文献   

6.
Highly hydrated polyelectrolyte multilayers (PEMs) were fabricated by “layer by layer” (LBL) assembly of poly (diallyl dimethyl ammonium chloride) (PDADMAC) and poly (sodium 4‐styrene sulfonate) (PSS) in 0.5 M NaCl. Both thickness and hydration of the film were determined in situ as the multilayer was assembled by means of the quartz crystal microbalance with dissipation (QCM‐D) and the Spectroscopic Ellipsometry techniques combined in a single device. For PEMs of 17 total layers in water, a final thickness of up to 300 nm and a hydration of 69% were measured. The response towards the ionic strength was then studied by means of QCM‐D. PEMs of 17 layers, with PDADMAC as last layer, shrunk dramatically and lost water when exposed to aqueous NaCl solutions of increasing concentration. Indeed, a thickness variation up to 100 nm and reduction in the 50% of the water content were observed when the PEM was exposed to 1 M NaCl. On the contrary, PEMs where PSS appears on top showed no measurable change upon the variation in the ionic strength. This brings the possibility to control the responsive character of the PEMs simply by selecting the last polyelectrolyte layer (PDADMAC or PSS) deposited. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
A quartz crystal microbalance (QCM) and dual polarization interferometry (DPI) have been utilized to study how the structure of poly(allylamine hydrochloride) (PAH)/poly(styrene sulfonate) (PSS) multilayers is affected by the rinsing method (i.e., the termination of polyelectrolyte adsorption). The effect of the type of counterions used in the deposition solution was also investigated, and the polyelectrolyte multilayers were formed in a 0.5 M electrolyte solution (NaCl and KBr). From the measurements, it was observed that thicker layers were obtained when using KBr in the deposition solution than when using NaCl. Three different rinsing protocols have been studied: (i) the same electrolyte solution as used during multilayer formation, (ii) pure water, and (iii) first a salt solution (0.5 M) and then pure water. When the multilayer with PAH as the outermost layer was exposed to pure water, an interesting phenomenon was discovered: a large change in the energy dissipation was measured with the QCM. This could be attributed to the swelling of the layer, and from both QCM and DPI it is obvious that only the outermost PAH layer swells (to a thickness of 25-30 nm) because of a decrease in ionic strength and hence an increase in intra- and interchain repulsion, whereas the underlying layers retain a very rigid and compact structure with a low water content. Interestingly, the outermost PAH layer seems to obtain very similar thicknesses in water independent of the electrolyte used for the multilayer buildup. Another interesting aspect was that the measured thickness with the DPI evaluated by a single-layer model did not correlate with the estimated thickness from the model calculations performed on the QCM-D data. Thus, we applied a two-layer model to evaluate the DPI data and the results were in excellent agreement with the QCM-D results. To our knowledge, this evaluation of DPI data has not been done previously.  相似文献   

8.
We report the investigation of surface forces between polyelectrolyte multilayers of poly(allylamine hydrochloride) (PAH) and poly(styrenesulfonate sodium salt) (PSS) assembled on mica surfaces during film buildup using a surface force apparatus. Up to four polyelectrolyte layers were prepared on each surface ex situ, and the surface interactions were measured in 10(-4) M KBr solutions. The film thickness under high compressive loads (above 2000 microN/m) increased linearly with the number of deposited layers. In all cases, the interaction between identical surfaces at large separations (>100 A from contact) was dominated by electrostatic double-layer repulsion. By fitting DLVO theory to the experimental force curves, the apparent double-layer potential of the interacting surfaces was calculated. At shorter separations, an additional non-DLVO repulsion was present due to polyelectrolyte chains extending some distance from the surface into solution, thus generating an electrosteric type of repulsion. Forces between dissimilar multilayers (i.e., one of the multilayers terminated with PSS and the other with PAH) were attractive at large separations (30-400 A) owing to a combination of electrostatic attraction and polyelectrolyte bridging.  相似文献   

9.
The growth, morphology, and interaction/adhesion properties of supported poly(sodium 4-styrenesulfonate)/poly(allylamine hydrochloride) (PSS/PAH) and DNA/PAH multilayers were investigated by means of surface plasmon resonance spectroscopy, atomic force microscope (AFM) imaging, and AFM-related force measurements. Multilayers were assembled on a prelayer of poly(ethylenimine) (PEI) both with and without drying. SPR results showed a linear growth of the assembly in the case of PSS/PAH multilayers and nonlinear growth for DNA/PAH multilayers. Measurements of forces acting between a bare glass sphere and a multilayer-coated surface indicated repulsive or attractive forces, depending on surface charge, which suggests that, on approach, electrostatic forces dominate. On separation, we observed large pull-off forces in the case of positively charged multilayers and weak pull-off forces in the case negatively charged multilayers. Multiple adhesions and plateau regions observed on separation were interpreted in terms of a bridging of multiple polymer chains between the glass particle and the multilayer and a stretching of the polyelectrolyte loops. The dependence of the pull-off force on the number of deposited layers shows regular oscillations.  相似文献   

10.
Interactions between surfaces bearing multilayer films of poly(allylamine hydrochloride) (PAH) and poly(styrenesulfonate sodium salt) (PSS) were investigated across a range of aqueous KBr solutions. Three layer films (PAH/PSS/PAH) were preassembled on mica surfaces, and the resulting interactions were measured with the interferometric surface force apparatus (SFA). Increasing the ionic strength of the medium resulted in a progressive swelling of the multilayer films. Interactions in solutions containing more than 10(-3) M KBr were dominated by a long-ranged steric repulsion originating from compression of polyelectrolyte segments extending into solution. In 10(-1) M KBr, repeated measurements at the same contact position showed a considerable reduction of the range and the strength of the steric force, indicating a flattening of the film during initial approach. Furthermore, this flattening was irreversible on the time scale of the experiments, and measurements performed up to 72 h after the initial compression showed no signs of relaxation. These studies aid in understanding the dominant interactions between polyelectrolyte multilayers, including polyelectrolyte films deposited on colloidal particles, which is important for the preparation of colloidally stable nanoengineered particles.  相似文献   

11.
We report the preparation, characterization, and mechanical properties of polyelectrolyte/phosphorus dendrimer multilayer microcapsules. The shells of these microcapsules are composed either by alternating poly(styrenesulfonate) (PSS) and positively charged dendrimer G4(NH+Et2Cl-)96 or by alternating poly(allylamine hydrochloride) (PAH) and negatively charged dendrimer G4(CH-COO-Na+)96. The same multilayers were constructed on planar support to examine their layer-by-layer growth and to measure the multilayer thickness. Surface plasmon resonance spectroscopy (SPR) showed regular linear growth of the assembly upon each bilayer deposited. We probe the mechanical properties of these polyelectrolyte/dendrimer microcapsules by measuring force-deformation curves with the atomic force microscope (AFM). The experiment suggests that they are much softer than PSS/PAH microcapsules studied before. This softening is attributed to an enhanced permeability of the polyelectrolyte/dendrimer multilayer shells as compared with multilayers formed by linear polyelectrolytes. In contrast, Young's modulus of both dendrimer-based multilayers was found to be on the same order as that of PSS/PAH multilayers.  相似文献   

12.
Poly(sodium 4-styrenesulfonate) (PSS)/poly(diallyldimethylammonium chloride) (PDADMAC) multilayers were treated with 1-5 M NaCl solutions, resulting in continuous changes in the physicochemical properties of the multilayers. Significant mass loss was observed when the salt concentration was higher than 2 M and reached as high as 72% in a 5 M NaCl solution. The disassembly occurred initially in the superficial layers and then developed in the bulk multilayers. For the multilayers with PDADMAC as the outmost layer, the molar ratio of PSS/PDADMAC was increased and the surface chemistry was changed from PDADMAC domination below 2 M NaCl to PSS domination above 3 M NaCl. Owing to the higher concentrations of uncompensated for polyelectrolytes at both lower and higher salt concentrations, the swelling ratio of the multilayers was decreased until reaching 3 M NaCl and then was increased significantly again. The salt-treated PSS/PDADMAC thin films are expected to show different behaviors in terms of the physical adsorption of various functional substances, cell adhesion and proliferation, and chemical reaction activity.  相似文献   

13.
14.
Prussian blue (PB) nanoparticles were immobilized in polyelectrolyte (PE) multilayers of various compositions and thickness. Films containing nanoparticles and poly(allylamine hydrochloride) (PAH) were formed using the layer-by-layer adsorption method. A layer of branched poly(ethyleneimine) (PEI) was used to anchor the multilayer structure at the surface of a gold electrode. The films exhibited electroactive properties, increasing with the number of deposited PB layers. The properties of PEI/(PB/PAH) n multilayers were then compared with the ones containing additionally the conductive polymer poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) (PEDOT:PSS). We found that the addition of the conductive, water-soluble polymer enhances the electroactive properties of the multilayer films. It also increased sensitivity of the multilayer-covered electrodes for electrochemical detection of hydrogen peroxide.  相似文献   

15.
Responsive polyelectrolyte multilayers (PEMs) of poly(diallyl dimethyl ammonium chloride) (PDADMAC) and poly(styrene sodium sulfonate) (PSS) with thicknesses between 350 and 400 nm for 11 deposited polyelectrolyte layers were fabricated assembling the polyelectrolytes at 3 M NaCl. When the 3 M NaCl bulk solution is replaced by water, the PEMs release water, approximately a 46% of the total mass, and experience a thickness reduction of more than 200 nm. Changes in thickness and water content are fully reversible. The film recovers its original thickness and water content when it is exposed again to a 3 M NaCl solution. A responsive polymer film is achieved with the capability of swelling at high ionic strength and collapsing in water with variations in thickness of hundred of nanometers.  相似文献   

16.
Multilayer films were assembled from a copolymer containing both weakly and strongly charged pendant groups, poly(4-styrenesulfonic acid-co-maleic acid) (PSSMA), deposited in alternation with poly(allylamine hydrochloride) (PAH). The strongly charged groups (styrene sulfonate, SS) are expected to form electrostatic linkages (to enhance film stability), while the weakly charged groups (maleic acid, MA) can alter multilayer film properties because they are responsive to external pH changes. In this study, we varied several assembly conditions such as pH, SS/MA ratio in PSSMA, and the ionic strength of the polyelectrolyte solutions. The multilayer films were also treated by immersion into pH 2 and 11 solutions after assembly. Quartz crystal microgravimetry and UV-visible spectrophotometry showed that the thickness of PSSMA/PAH multilayers decreases with increasing assembly pH regardless of whether salt was present in the polyelectrolyte solutions. When no salt was added, the multilayers are thinner, smoother, and grow less regularly. Atomic force microscopy images indicate that the presence of salt in polyelectrolyte solutions results in rougher surface morphologies, and this effect is especially significant in multilayers assembled at pH 2 and pH 11. When both polyelectrolytes are adsorbed at conditions where they are highly charged, salt was necessary to promote regular multilayer growth. Fourier transform infrared spectroscopy studies show that the carboxylic acids in the multilayers are essentially ionized when assembled from different pHs in 0.5 M sodium chloride solutions, whereas some carboxylic acids remain protonated in the multilayers assembled from solutions with no added salt. This resulted in different pH stability regimes when the multilayers were exposed to different pH solutions, post assembly.  相似文献   

17.
We have used anionic and cationic single-wall carbon nanotube polyelectrolytes (SWNT-PEs), prepared by the noncovalent adsorption of ionic naphthalene or pyrene derivatives on nanotube sidewalls, for the layer-by-layer self-assembly to prepare multilayers from carbon nanotubes with polycations, such as poly(diallyldimethylammonium) or poly(allylamine hydrochloride) (PDADMA or PAH, respectively), and polyanions (poly(styrenesulfonate), PSS). This is a general and powerful technique for the fabrication of thin carbon nanotube films of arbitrary composition and architecture and allows also an easy preparation of all-SWNT (SWNT/SWNT) multilayers. The multilayers were characterized with vis-near-IR spectroscopy, X-ray photoelectron spectroscopy (XPS), surface plasmon resonance (SPR) measurements, atomic force microscopy (AFM), and imaging ellipsometry. The charge compensation in multilayers is mainly intrinsic, which shows the electrostatic nature of the self-assembly process. The multilayer growth is linear after the initial layers, and in SWNT/polyelectrolyte films it can be greatly accelerated by increasing the ionic strength in the SWNT solution. However, SWNT/SWNT multilayers are much more inert to the effect of added electrolyte. In SWNT/SWNT multilayers, the adsorption results in the deposition of 1-3 theoretical nanotube monolayers per adsorbed layer, whereas the nominal SWNT layer thickness is 2-3 times higher in SWNT/polyelectrolyte films prepared with added electrolyte. AFM images show that the multilayers contain a random network of nanotube bundles lying on the surface. Flexible polyelectrolytes (e.g., PDADMA, PSS) probably surround the nanotubes and bind them together. On macroscopic scale, the surface roughness of the multilayers depends on the components and increases with the film thickness.  相似文献   

18.
The binding of immunogloblulins (IgG) (mouse monoclonal recognizing IFNγ) on precoated polystyrene or silica surfaces by the layer-by-layer technique has been investigated with QCM-D and DPI. The aim of the work was to increase the sensitivity of the conventional enzyme-linked immunosorbent spot (ELISpot) assay. The polyelectrolytes used to build the multilayers were poly(allylamine hydrochloride) (PAH)/poly(sodium 4-styrenesulfonate) (PSS) alternately adsorbed from 150mM NaCl. The multilayer build up is linear and the internal structure of the PAH/PSS multilayer is compact and rigid as observed by low relative water content (20-25%) and high layer refractive index (n~1.5) after the formation of five bilayers. Incorporation of IgG within the PAH/PSS multilayer did not give rise to overcharging and did not affect the linear build up. ELISpot test on PAH/PSS multilayer modified polystyrene wells showed that the cytokine response was significantly smaller than on the regular PVDF backed polystyrene wells. This may be due to the compact and rigid nature of the PAH/PSS multilayer, which does not allow formation of the kind of three dimensional support needed to achieve bioactive IgG binding to the surface. Immunological tests of the polyelectrolyte multilayers in the absence of IgG showed that PSS terminated PAH/PSS multilayer did not induce any cytokine response whereas PAH terminated did, which suggests that PSS totally covers the surface from the cells point of view.  相似文献   

19.
This study addresses the effect of ionic strength and type of ions on the structure and water content of polyelectrolyte multilayers. Polyelectrolyte multilayers of poly(sodium-4-styrene sulfonate) (PSS) and poly(diallyl dimethyl ammonium chloride) (PDADMAC) prepared at different NaF, NaCl and NaBr concentrations have been investigated by neutron reflectometry against vacuum, H(2)O and D(2)O. Both thickness and water content of the multilayers increase with increasing ionic strength and increasing ion size. Two types of water were identified, "void water" which fills the voids of the multilayers and does not contribute to swelling but to a change in scattering length density and "swelling water" which directly contributes to swelling of the multilayers. The amount of void water decreases with increasing salt concentration and anion radius while the amount of swelling water increases with salt concentration and anion radius. This is interpreted as a denser structure in the dry state and larger ability to swell in water (sponge) for multilayers prepared from high ionic strengths and/or salt solution of large anions. No exchange of hydration water or replacement of H by D was detected even after eight hours incubation time in water of opposing isotopic composition.  相似文献   

20.
Polyelectrolyte multilayer adsorption on mica was studied by the streaming potential method in the parallel-plate channel setup. The technique was calibrated by performing model measurements of streaming potential by using monodisperse latex particles. Two types of polyelectrolytes were used in our studies: poly(allylamine) hydrochloride (PAH), of a cationic type, and poly(sodium 4-styrenesulfonate) (PSS) of an anionic type, both having molecular weight of 70,000. The bulk characteristics of polymers were determined by measuring the specific density, diffusion coefficient for various ionic strengths, and zeta potential. These measurements as well as molecular dynamic simulations of chain shape and configurations suggested that the molecules assume an extended, wormlike shape in the bulk. Accordingly, the diffusion coefficient was interpreted in terms of a simple hydrodynamic model pertinent to flexible rods. These data allowed a proper interpretation of polyelectrolyte multilayer adsorption from NaCl solutions of various concentrations or from 10(-3) M Tris buffer. After completing a bilayer, periodic variations in the apparent zeta potential between positive and negative values were observed for multilayers terminated by PAH and PSS, respectively. These limiting zeta potential values correlated quite well with the zeta potential of the polymers in the bulk. The stability of polyelectrolyte films against prolonged washing (reaching 26 h) also was determined using the streaming potential method. It was demonstrated that the PSS layer was considerably more resistant to washing, compared to the PAH layer. It was concluded that the experimental data were consistent with the model postulating particle-like adsorption of polyelectrolytes with little chain interpenetration. It also was concluded that due to high sensitivity, the electrokinetic method applied can be effectively used for quantitative studies of polyelectrolyte adsorption, desorption, and reconformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号