首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cypermethrin/β-CD complexes were prepared at 1:2 cypermethrin/β-CD molar ratio by different complexation methods: conventional coprecipitation, suspension and kneading methods as well as “melting in solution” technique, which was developed in our laboratory. The complexes were investigated by UV-spectrophotometry and thermal analysis. It was found that complexes made by coprecipitation, suspension and kneading methods contained cypermethrin not only in complexed but also in uncomplexed form. The guest molecule in the complex prepared by “melting in solution” technique showed to be completely complexed, so it was the most effective complexation method studied.Investigating the solubility of cypermethrin with different cyclodextrins (CDs), it was established that the increase of solubility of cypermethrin was the highest in case of methylated cyclodextrins. The equilibrium constants were calculated from solubility isotherms. On the basis of these results, the heptakis(2,6-di-O-methyl)-β-cyclodextrin (DIMEB) complex was the more stable. By UV-irradiation measurements it was found that the photodegradation of cypermethrin was inhibited by methylated β-CDs.  相似文献   

2.
Dissolution properties of cypermethrin/cyclodextrin complexes   总被引:1,自引:0,他引:1  
Cypermethrin—a very effective pyrethroid-type insecticide—has been complexed with β-cyclodextrin and peracetylated-β-cyclodextrin with different guest content. Dissolution measurements by reversed phase HPLC method, together with UV-spectrophotometry, differential scanning calorimetry and thermogravimetry were applied to prove the inclusion complex formation and characterize the complexes. With the help of the thermal analysis the really complexed (strongly bound) and surface-bound guests were distinguished. All of the β-cyclodextrin complexes show better dissolution rate than the pure guest. In case of inclusion complexes an oversaturated solution was formed with extremely high concentration of active substance (6–19 mg L?1) during the first couple of minutes then the concentration decreased gradually until it reached the equilibrium solubility value of the complex (2 mg L?1). The cypermethrin/peracetylated-β-cyclodextrin complexes prepared with organic solvent method showed slightly retarded dissolution profile compared to the pure guest. The area under the dissolution curves was introduced for quantitative characterization of the dissolution rate. The release was found to depend on the complexed guest content of the samples. The continuous variation plots used first for this parameter gave information on the stoichiometry of the complexes: 1:2 cypermethrin/β-cyclodextrin and 1:1.25 cypermethrin/peracetylated-β-cyclodextrin.  相似文献   

3.
In the present study the solid and liquid phase behaviour of mandelic acid cyclodextrin systems were studied. The samples were prepared using dry grinding/kneading technique in the absence of any solvent. Thermoanalytical methods (TG, DSC, EGD) were used to characterise the solid compounds. In liquid phase the stoichiometry and the stability constants of the complexes formed were determined using UV spectrophotometry. Partial complex formation was found in case of all cyclodextrins used. The amount of uncomplexed mandelic acid varied between 10–20% of the total guest content.  相似文献   

4.
The differences in bound water content of beef semimembranous muscle samples obtained from previously chilled (24 h at +4°C) middle-aged beef carcasses were determined by the use of DSC. Initially, samples obtained from fresh, unprocessed meat were frozen at –40, –50 or –65°C to determine their melting peaks for freezable water (free water) content with the use of DSC. The samples were then subjected to an environment with an ambient temperature of –30, –35, –40 or –45°C, with no air circulation, or with an air circulation speed of 2 m s–1, until a thermal core temperature of –18°C was attained; this was followed by thawing the samples until a thermal core temperature of 0°C was reached. This process was followed by subjecting the samples to the ambient temperatures mentioned above, to accomplish complete freezing and thawing of the samples, with DSC, and thereby determination of the freezable water contents, which were then used to determine the peaks of melting. The calculated peak areas were divided by the latent heat of melting for pure water, to determine the freezable water contents of the samples. The percentage freezable water content of each sample was determined by dividing its freezable water content by its total water content; and the bound water content of each sample was determined by subtracting the percentage free water content from the total. In view of the fact that the free water content of a sample is completely in the frozen phase at temperatures of –40°C and below, the calculations of free and bound water contents of the samples were based on the averages of values obtained at three different temperatures.  相似文献   

5.
The freezable water contents of samples obtained from previously chilled semimembranous muscle of middle-aged beef carcasses after a 24 h cooling period a room at in 5±1C were determined by differential scanning calorimetry (DSC) at –5, –10, –15, –20, –30, –40, –50 and –65C. This was accomplished by freezing the samples at the above-mentioned temperatures, followed by thawing to 35C, and measuring the melting peaks of freezable water. The areas of these peaks were determined by using the peak integration method programs through a computer linked to the DSC, and they were then used to determine the latent heat of melting (H m) in kJ kg–1 at each freezing temperature. The resultant latent heat of melting per sample was divided by the latent heat for pure water to determine the amount of freezable water present in these samples. This amount of freezable water was divided by the total water content of the meat sample to determine the percentage of freezable water in the sample. The percentage of freezable water was subtracted from 100 to determine the percentage of bound water present in the sample.  相似文献   

6.
The majority of snacks expanded by extrusion (SEE) are made with vegetable sources, to improve their nutritional content; it has been proposed to incorporate squid (Dosidicus gigas), due to its high protein content, low price and high availability. However, the interaction of proteins of animal origin with starch during extrusion causes negative effects on the sensory properties of SEE, so it is necessary to know the type of protein–carbohydrate interactions and their effect on these properties. The objective of this research was to study the interaction of proteins and carbohydrates of SEE elaborated with squid mantle, potato and corn. The nutritional composition and protein digestibility were evaluated, Fourier transform infrared (FTIR) and Differential Scanning Calorimetry (DSC) were used to study the formation of protein–starch complexes and the possible regions responsible for their interactions. The SEE had a high protein content (40–85%) and biological value (>93%). The melting temperature (Tm) was found between 145 and 225 °C; the Tm values in extruded samples are directly proportional to the squid content. The extrusion process reduced the amine groups I and II responsible for the protein–protein interaction and increased the O-glucosidic bonds, so these bonds could be responsible for the protein–carbohydrate interactions.  相似文献   

7.
Hydrated inclusion complexes of the hosts β-CD (CD=cyclodextrin), γ-CD and permethylated β-CD with the guest clofibric acid were analysed by TG and DSC methods to characterise their dehydration behaviours. Activation energies for dehydration of the β- and γ-CD clofibric acid complexes, determined by isothermal thermogravimetry, are significantly lower (∼20-25%) than those for the corresponding uncomplexed hydrated CDs. These data can be reconciled with X-ray structural data which show that H2O molecules in the complexes occupy different crystal sites from those occupied in the parent CDs. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
The inclusion complexes of selected imidazoline-derived drugs, namely Antazoline (AN), Naphazoline (NP) and Xylometazoline (XM) with β-cyclodextrin (β-CD) were investigated using steady-state fluorescence spectroscopy, differential scanning calorimetry (DSC), and molecular mechanics (MM) calculations and modeling. The modified form of the Benesi-Hildebrand relation was employed for estimating the formation constant (Kf) of the 1:1 inclusion complexes, which was applied based on measuring the variation in the fluorescence intensity of the guest molecule as a function of growing β-CD concentration. On the other hand, the formation of the inclusion complexes was verified by analyzing solid samples of the complexes using DSC. The thermodynamics of the inclusion complexation, standard enthalpy (ΔH°) and entropy changes −(ΔS°) were obtained from the temperature-dependence of Kf. Obtained values of ΔH° and ΔS° indicated that the inclusion process favorably proceeds through enthalpy changes that was sufficiently predominant to compensate for the unfavorable entropy changes. MM calculations revealed that the proposed drugs molecules can form 1:1 inclusion complexes with β-CD that are stabilized predominantly through van der Waals forces. In addition, MM calculation provided the energetically favored configuration of the inclusion complexes, where NP and XM can be included inside the β-CD cavity through its wide rim, whereas AN can penetrate through the narrow rim of the β-CD cavity.  相似文献   

9.
To investigate the changes in chemical composition of flaxseed oil during thermal-induced oxidation and the resultant effect on thermal properties, samples with different oxidation levels were obtained by being heated at 180 °C for two hours and four hours. The oxidation degree was evaluated using peroxide value (PV), extinction coefficient at 232 nm and 268 nm (K232 and K268), and total polar compounds (TPC). Using chromatography, the fatty acid profile and triacylglycerol (TAG) profile were examined. Differential scanning calorimetry (DSC) was used to determine the crystallization and melting profiles. Thermal-induced oxidation of flaxseed oil led to a significant increase (p < 0.05) in PV, K232, K268, and TPC, but the relative content of linolenic acid (Ln) and LnLnLn reduced dramatically (p < 0.05). TPC derived from lipid degradation affected both crystallization and melting profiles. Statistical correlations showed that the onset temperature (Ton) of the crystallization curve was highly correlated with K232, TPC, and the relative content of LnLnLn (p < 0.05), whereas the offset temperature (Toff) of the melting curve was highly correlated with the relative content of most fatty acids (p < 0.05). This finding provides a new way of rapid evaluation of oxidation level and changes of chemical composition for flaxseed oils using DSC.  相似文献   

10.
A novel charge-transfer (CT) host system is developed using CT complexes composed of rac-3,3′-dihydroxy-1,1′-bi-2-naphthol and 1,1′-dibenzyl-4,4′-bipyridinium dichloride. This CT host complex has a 1D channel-like cavity in which guest (MeOH and EtOH) molecules can be discharged and adsorbed. The color and DRS of the CT crystals change according to the presence of guest molecules in the host complex.  相似文献   

11.
The aim of this study was to describe the thermal properties of selected cultivars of flaxseed oil by the use of the differential scanning calorimetry (DSC) technique. The crystallization and melting profiles were analyzed depending on different scanning rates (1, 2, 5 °C/min) as well as oxidative induction time (OIT) isothermally at 120 °C and 140 °C, and oxidation onset temperatures (Ton) at 2 and 5 °C/min were measured. The crystallization was manifested as a single peak, differing for a cooling rate of 1 and 2 °C/min. The melting curves were more complex with differences among the cultivars for a heating rate of 1 and 2 °C/min, while for 5 °C/min, the profiles did not differ, which could be utilized in analytics for profiling in order to assess the authenticity of the flaxseed oil. Moreover, it was observed that flaxseed oil was highly susceptible to thermal oxidation, and its stability decreased with increasing temperature and decreasing heating rate. Significant negative linear correlations were found between unsaturated fatty acid content (C18:2, C18:3 n-3) and DSC parameters (OIT, Ton). Principal component analysis (PCA) also established a strong correlation between total oxidation value (TOTOX), peroxide value (PV) and all DSC parameters of thermo-oxidative stability.  相似文献   

12.
A complex between deoxycholic acid (DCA) and salicylic acid (SA) was prepared by grinding and coprecipitation methods. The resultant complex was characterized by means of powder X-ray diffractometry, IR spectroscopy and thermal analysis. The stoichiometry (DCA : SA 1 : 1) of the complex obtained by grinding was identical to that obtained by coprecipitation. The powder X-ray diffraction pattern of the DCA–SA complex differed from the typical pattern of DCA–guest complexes such as DCA–camphor and DCA–phenanthrene complexes. IR spectra suggested that a different kind of hydrogen bonding was formed in the crystal of the DCA–SA complex, compared with the other DCA–guest complexes. This was in good agreement with data from the crystal structure.  相似文献   

13.
A thermal study using DSC and Hot Stage Microscopy (HSM) was carried out to investigate the interaction in solid state of the binary system PEG 4000 — oxazepam, and to establish their phase diagram. The eutectic composition, which melting occurs at lower temperature as compared with the pure components, has been determined. The results obtained by DSC and HSM have indicated that PEG 4000 — oxazepam mixtures displays no obvious incompatibilities, and that the system shows a typical eutectic behaviour. However because of the closeness of the melting of PEG 4000 to the eutectic temperature, it was difficult to determine precisely the eutectic composition and temperature on the basis of DSC measurements alone. The use of heats of fusion corresponding to physical mixtures allowed an estimation of the eutectic composition at 6% w/w oxazepam. Additional information of temperature (57.6C) and composition (5–10% w/w oxazepam) of the eutectic was obtained by HSM using the contact method. This low melting temperature in this range of compositions offers advantages in terms of drug stability and easy manufacture.  相似文献   

14.
The cyclic starches α-, β-, and γ-cyclodextrins (CDs) readily form inclusion complexes (ICs) with a large variety of polymers. In polymer-CD-ICs, the CD hosts are threaded by the guest polymers, which must be highly extended, and stacks of polymer threaded host CDs pack closely together and crystallize. When guest polymers are coalesced from their CD-IC crystals, by washing with a solvent good, bad for CD, polymer, or treatment with an amylase enzyme, the guest polymers coalesce into bulk samples whose structures, morphologies, and even conformations are distinct from bulk samples made from their solutions and melts. We generally observe (i) crystallizable homopolymers coalesced from their CD-ICs to evidence increased levels of crystallinity, unusual polymorphs, and higher melting, crystallization, and decomposition temperatures, while coalesced amorphous homopolymers exhibit higher glass-transition temperatures, than samples consolidated from their disordered solutions and melts; (ii) molecularly mixed, intimate blends of two or more polymers that are normally believed to be immiscible can be achieved by coalescence from their common CD-IC crystals, (iii) the phase segregation of incompatible blocks can be controlled (suppressed or increased) when block copolymers are coalesced from their CD-IC crystals, and (iv) the thermal and temporal stabilities of the coalesced and well-mixed homopolymer blends and block copolymers appear to be substantial, thereby suggesting retention of as-coalesced structures and morphologies under normal thermal processing conditions. Furthermore, CDs may be covalently incorporated in polymers both during and after their syntheses, thereby providing a broad range of new functionalities for delivery of additives or to act as sensors or filters. Alternatively, additive-CD-ICs or additives rotaxanated with CDs may be effectively delivered to polymers. As an example, TiO2—filled polypropylene fibers may be readily dyed in aqueous solution using water soluble CD-rotaxanated azo-dyes.  相似文献   

15.
Racemic free mandelic acid and its methyl, ethyl, isoamyl and benzyl esters were found to form inclusion complexes with all the three studied natural cyclodextrins proved by thermoanalytical results. Differences between the solid state stability of guests were detected mainly by evolved gas analysis. Even signs of an eventual optical resolution by molecular inclusion were observed in several cases, but still not sufficiently proven. Due to the rather high volatility and low melting points of the majority of guest substances DSC technique was found to be suitable for studying the cyclodextrin complexes of mandelic acid. Dedicated to Prof. József Szejtli on the occasion of his 60th birthday  相似文献   

16.
The aim of this work was to characterise interactions between ribavirin (RBV) and native cyclodextrins (CDs). The extent of complexation in solution has been evaluated by high performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR). Thermogravimetry (TG), differential scanning calorimetry (DSC) and infrared spectroscopy (FT-IR) were used to characterise the solid state of all the binary systems. Complexation of RBV with α-, β-, and γ-CDs was proved by FT-IR, HPLC and thermal analysis. The 1:1 stoichiometry for the complexes was obtained by HPLC. The stability constants for RBV with α-, β- and γ-CD were determined to be 1493, 2606, and 1179 M−1, respectively. Consequently β-CD was the most suitable of the three complexing agents since it showed the highest stability constant. RBV appears not included inside the cavity of the CD because H-3 and H-5 protons were not shifted in the presence of the molecule as proved by NMR. The 2D ROESY spectra did not show any dipolar proton interaction of the RBV with the CDs. Thus the complexation does not seem to be a host–guest inclusion complex but an external intermolecular complex. FT-IR spectral changes due to the RBV carboxamide group vibrations with the CDs confirm this association.  相似文献   

17.
DSC can be used to quickly determine if a product labeled as butter is actually a recombined butter made without milk. Recombined butter is manufactured from anhydrous milk fat, skim milk powder, water, salt, and lecithin. Melting profiles of tempered samples of natural butter and recombined butter were alike, but DSC curves from 5 to 25°C of untempered refrigerated samples revealed that the enthalpy of the melting transition around 17–20°C was much higher for natural butter than for recombined butter. The procedure for differentiating the two products can be completed in less than 20 min.Mention of brand or firm names does not constitute an endorsement by the U.S. Department of Agriculture over others of a similar nature not mentioned.The authors thank Dr. Thomas Foglia for helpful discussions and Donna Lu for assisting in butter extractions.  相似文献   

18.
The potential for differential scanning calorimetry (DSC) as a tool for the discrimination of forensic polymer specimens is investigated for a series of commercial low density polyethylene (LDPE) samples. Variation in the melting temperatures of ‘as received’ samples was found to be too small for its use in sample discrimination. The melting behaviour of thermally treated samples, quenched from the melt in liquid nitrogen followed by annealing at temperatures below the melting temperature, showed promise in discrimination potential. The application of principal component analysis to aid discrimination demonstrated the necessity in using a controlled thermal history to aid the discrimination process. The clustering of the LDPEs based on the factors selected demonstrated the potential of DSC for the discrimination of forensic LDPE samples.  相似文献   

19.
A water-soluble cyclophane dimer having two disulfide groups as a reduction-responsive cleavable bond as well as several acidic and basic functional groups as a pH-responsive ionizable group 1 was successfully synthesized. It was found that 1 showed pH-dependent guest-binding behavior. That is, 1 strongly bound an anionic guest, 6-p-toluidinonaphthalene-2-sulfonate (TNS) with binding constant (K/M−1) for 1:1 host-guest complexes of 9.6 × 104 M−1 at pH 3.8, which was larger than those at pH 7.4 and 10.7 (6.0 × 104 and 2.4 × 104 M−1, respectively), indicating a favorable electrostatic interaction between anionic guest and net cationic 1. What is more, release of the entrapped guest molecules by 1 was easily controlled by pH stimulus. Large favorable enthalpies (ΔH) for formation of host-guest complexes were obtained under the pH conditions employed, suggesting that electrostatic interaction between anionic TNS and 1 was the most important driving force for host-guest complexation. Such contributions of ΔH for formation of host-guest complexes decreased along with increased pH values from acidic to basic solutions. Upon addition of dithiothreitol (DTT) as a reducing reagent to an aqueous PBS buffer (pH 7.4) containing 1 and TNS, the fluorescence intensity originating from the bound guest molecules decreased gradually. A treatment of 1 with DTT gave 2, having less guest-binding affinity by the cleavage of disulfide bonds of 1. Consequently, almost all entrapped guest molecules by 1 were released from the host. Moreover, such reduction-responsive cleavage of 1 and release of bound guest molecules was performed more rapidly in aqueous buffer at pH 10.7.  相似文献   

20.
Dialkyl- and diarylammonium ions are able to form complexes with α-cyclodextrin and cucurbit[6]uril. These amines are able to complex two guest molecules simultaneously resulting in the formation of homogeneous or heterogeneous 1:2 (ratio of dialkylammonium to ligand) complexes. The stability constants and reaction enthalpies for the formation of 1:1 complexes have been measured using potentiometric and calorimetric titrations. Differences between the values obtained by these methods can be attributed to solvent composition. Only for the 1:2 complex formation with cucurbit[6]uril, the ligands influenced each other. The polar carbonyl groups at each portal of the cucurbit[6]urils interacted simultaneously with the protonated amino group resulting in an electrostatic repulsion between both molecules. No further interactions between two complexed molecules of α-cyclodextrin or cucurbit[6]uril and α-cyclodextrin were observed. The absence of polar groups in the case of α-cyclodextrin led to unaffected formation of homogeneous and even heterogeneous 1:2 complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号