首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Silver nanosized crystallites have been synthesized in aqueous and polyols viz., ethylene glycol and glycerol, using a microwave technique. Dispersions of colloidal silver have been prepared by the reduction of silver nitrate both in the presence and absence of stabilizer poly(vinylpyrolidone) (PVP). It was observed that PVP is capable of complexing and stabilizing Ag nanoparticles formed through the reduction of Ag+ ions in water and ethylene glycol. In the case of ethylene glycol, it has been shown that the use of PVP leads to particles with a high degree of stability. The colloids are stable in glycerol for months even in the absence of stabilizer.  相似文献   

2.
Adsorbing polymers such as polysilazanes induce irreversible coagulation of hydrophobic silver colloids in nonpolar solvents. This is accompanied by broadening of the surface plasmon resonance (SPR) peak. A method to analyze the coagulation kinetics based on von Smoluchowski's theory utilizing the SPR change is described. The approach allows evaluating extinction spectra of aggregates of small sizes. A model for polymer adsorption kinetics in combination with a modified bridging efficiency model explains the observed coagulation inhibition over time in terms of macromolecules adsorption, spreading, and mutual repulsion.  相似文献   

3.
The present study presents two different methods to obtain hybrid material formed by the poly [styrene (ST)–poly(ethylene glycol) methyl ether methacrylate (PEGMA) 1100] and silver (Ag0). The aim has been to cover the polymeric particles with Ag0 shell. The first method consisted of mixing Ag0 nanoparticles dispersion with poly (ST-PEGMA 1100) dispersion, while in the second method, the Ag0 nanoparticles have been generated in situ. The hybrid materials have been characterized by MO, dynamic light scattering, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray energy dispersive spectrometry, and ultraviolet–visible spectrophotometry. The results confirm the obtaining of two types of morphologies. In the first case, the nanoparticles have been arranged in the interspatial zones of the polymer particles, while in the second method, the Ag0 nanoparticles have covered the polymer particles. Thus, the film obtained using the second method is more suitable for the practical application, as a separation membrane, using the antiseptic properties of Ag0.  相似文献   

4.
Four nanometer colloidal ceria nanocrystals in a fluorite cubic structure have been synthesized via an alcohothermal treatment at 180 degrees C for 24 h from Ce(NO(3))(3)*6H(2)O in ethanol, using various alkylamines including triethylamine, butylamine, and hexadecylamine as the bases and poly(vinylpyrrolidone) (PVP) as the stabilizer. They were characterized by multiple measurements of X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), ultraviolet visible (UV-vis) spectroscopy, dynamic light scattering (DLS), and infrared spectroscopy (IR). The introduction of PVP could effectively stabilize the cerium nuclei against self-aggregation and finally lead to the formation of the CeO(2) colloids. As compared with that of their precipitated counterparts, the UV-vis spectra showed a blue-shifted absorption edge for the as-obtained colloidal nanocrystals, revealing that their surfaces were well-passivated by PVP. Four types of self-organized monolayer patterns (i.e., isolated particles, short chainlike (pseudo-1-D aggregated), pearl necklace-like (1-D aggregated), and dendritic (pseudo-2-D aggregated) alignments) appeared for the as-obtained colloidal particles on the copper TEM grids, due to the delicate balance of the attractive and repulsive forces between the PVP-passivated CeO(2) nanocrystals during the irreversible evaporation of the solvent from various colloidal solutions under ambient conditions. The type of alkylamine and the concentration of PVP were confirmed to be the crucial factors determining the oriented-aggregation dimensionality of the CeO(2) colloids. Possible interparticle interaction modes have been suggested to explain such complex self-organization patterns exhibited by the as-obtained CeO(2) nanocrystals.  相似文献   

5.
The catalytic electroreduction of O2 at DME in the presence of colloidal silver has been studied. Two colloids, characterized by different catalytic activity, have been prepared and tested. The influence of the height of the mercury head, pH, and temperature on both the first and the second wave of the polarographic reduction of O2 have been investigated. A mechanism, which takes into account the possible adsorption of OH? ions on the silver catalyst, is proposed for the H2O2 decomposition: the experimental points fit the calculated curve of log ks vs. pH well. Thermodynamic parameters are also derived.  相似文献   

6.
This work reports the synthesis and studies on photocatalytic activity of a material based on titanium oxide doped with silver. Two kinds of Ag-deposited TiO2 were synthesized via soft chemical reduction (SCR) and photodeposition (PD) methods. The structure, composition and chemical properties of the obtained products were investigated by X-ray diffraction, UV-vis diffuse reflectance spectroscopy, photoluminescence spectra and Fourier transformation infrared spectroscopy techniques. The photocatalytic oxidation activity in a course of removal and destruction of organic compounds such as methyl orange dye using Ag/TiO2 hybrid material was studied. The results suggest that SCR synthesized Ag/TiO2 exhibited better photocatalytic performance that that obtained by PD method. The relationship between the synthesis method and photocatalytic activity of synthesized Ag/TiO2 was analyzed with a focus on the plasmonic photocatalysis of silver. When compared to PD method, the SCR produced more homogeneous and smaller silver particles with a better dispersion than photodeposition that results in a relative increase of material activity in the photocatalytic degradation of dye pollutant.  相似文献   

7.
Two-dimensional nanostructured silver films were electrodeposited at the surface of a silver nitrate subphase coated by a negatively charged dimyristoylphosphatidylglycerol (DMPG) Langmuir monolayer. The modifications of the phospholipid interfacial organization generated by the growing colloidal silver film were investigated using surface pressure-time isotherms and grazing incidence X-ray diffraction experiments (GIXD). A decrease in the initial surface pressure of the DMPG monolayer is observed outside of the growing silver film, followed by a stabilization of the surface pressure when the radius of the metallic layer reaches its plateau value. This behavior is attributed to the compression of the DMPG molecules above the silver film and to the correlated relaxation and expansion of those outside the silver film area as recorded by a Wilhelmy pressure sensor. GIXD experiments further evidenced the contraction of the phospholipid monolayer above the electrochemically growing films. Indeed, the diffraction spectra show a shift in the peak position toward higher values of the in-plane component of the wave-vector transfer, indicating a closer packing of the DMPG alkyl chains. This is also in agreement with the observed loss of the chain tilt angle, suggesting that the colloidal silver film induces interfacial structuring of the DMPG monolayer.  相似文献   

8.
The reactions of benzhydryl sulfides Ph2CHSCH2R (R = H, CONH2, COOH, CN) with peroxytrifluoroacetic acid in CF3COOH were studied experimentally and by the quantum chemical density functional theory (DFT) method and exhibited an unusual dependence on the substituent R. When R≠H, a complicated oxidative destruction of the substrates occurs to form 2,4,6-tribenzhydrylphenol as one of the products, while in the case of R = H, the starting benzhydryl sulfide is smoothly sulfoxidated. This fact is due to the common electron transfer from the substrate to reagent at the initial step and the difference in subsequent transformations of the species formed.  相似文献   

9.
By solution-based method, three kinds of silver colloids, self-assembled nanowires, triangular nanoplates and quasispherical nanoparticles, have been synthesized. TEM studies revealed that they exposed different crystal planes, such as {111} crystal planes to triangular nanoplates, mainly {100} and {111} planes to self-assembly nanowires. Hereby, do the distinct shapes and crystal planes have an impact on the surface enhanced Raman scattering (SERS)? The great differences of the SERS spectra of rhodamine B at these Ag colloids confirmed that the shapes and crystal planes of silver have great effect on Raman enhancement, especially the crystal planes.  相似文献   

10.
The results of the study of interlayer triplet-triplet energy transfer from anthracene molecules to Nile Red molecules in Langmuir-Blodgett films are presented. The observed sensitized delayed fluorescence of the energy acceptor is shown to be due to annihilation of migrating triplet excitons. It has been found that the decay kinetics of delayed fluorescence of the donor and the acceptor has a complex form and is described by a combination of the power and exponential functions. The dependence of the energy transfer efficiency on the distance between the donor and acceptor layers was studied.  相似文献   

11.
This paper presents results demonstrating the role of temperature and specific ions in mediating attraction between polymer-coated colloids and determining their equilibrium phase behavior. In particular, theoretical predictions of continuum van der Waals attraction between poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO)-coated polystyrene colloids are used to explain measured temperature and specific ion-dependent fluid-gel transitions in dispersions of these particles. Building on previous studies of PEO-PPO-PEO-coated polystyrene colloids dispersed in aqueous NaCl media, this work reports rheologically measured fluid-gel transitions as a function of temperature and NaCl/MgSO4 composition. Adhesive-sphere predictions of percolation thresholds are fit to measured fluid-gel data by allowing the adsorbed copolymer layer thickness as a single adjustable parameter. This allows the attraction between the PEO-PPO-PEO layers to be interpreted as a function of temperature and NaCl/MgSO4 composition. Quantitative predictions of a polymeric van der Waals attraction associated with the layer collapse in diminishing solvent conditions provides a simple mechanism for explaining the measured fluid-gel data as a dynamic percolation transition. Ultimately, this work identifies the importance of continuum polymeric van der Waals attraction for explaining specific ion-dependent phenomena.  相似文献   

12.
LiMnPO4, with a particle size of 50–150 nm, was prepared by oleic acid-assisted solid-state reaction. The materials were characterized by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. The electrochemical properties of the materials were investigated by galvanostatic cycling. It was found that the introduction of oleic acid in the precursor led to smaller particle size and more homogeneous size distribution in the final products, resulting in improved electrochemical performance. The electrochemical performance of the sample could be further enhanced by Co doping. The mechanism for the improvement of the electrochemical performance was investigated by Li-ion chemical diffusion coefficient ( [(D)\tilde]\textLi ) \left( {{{\tilde{D}}_{\text{Li}}}} \right) and electrochemical impedance spectroscopy measurements. The results revealed that the [(D)\tilde]\textLi {\tilde{D}_{\text{Li}}} values of LiMnPO4 measured by cyclic voltammetry method increase from 9.2 × 10−18 to 3.0 × 10−17 cm2 s−1 after Co doping, while the charge transfer resistance (R ct) can be decreased by Co doping.  相似文献   

13.
We review the free-volume theory (FVT) of Lekkerkerker et al. [Europhys. Lett. 20 (1992) 559] for the phase behavior of colloids in the presence of non-adsorbing polymer and we extend this theory in several aspects: (i) We take the solvent into account as a separate component and show that the natural thermodynamic parameter for the polymer properties is the insertion work Pi(v), where Pi is the osmotic pressure of the (external) polymer solution and v the volume of a colloid particle. (ii) Curvature effects are included along the lines of Aarts et al. [J. Phys.: Condens. Matt. 14 (2002) 7551] but we find accurate simple power laws which simplify the mathematical procedure considerably. (iii) We find analytical forms for the first, second, and third derivatives of the grand potential, needed for the calculation of the colloid chemical potential, the pressure, gas-liquid critical points and the critical endpoint (cep), where the (stable) critical line ends and then coincides with the triple point. This cep determines the boundary condition for a stable liquid. We first apply these modifications to the so-called colloid limit, where the size ratio q(R)=R/a between the radius of gyration R of the polymer and the particle radius a is small. In this limit the binodal polymer concentrations are below overlap: the depletion thickness delta is nearly equal to R, and Pi can be approximated by the ideal (van't Hoff) law Pi=Pi(0)=phi/N, where phi is the polymer volume fraction and N the number of segments per chain. The results are close to those of the original Lekkerkerker theory. However, our analysis enables very simple analytical expressions for the polymer and colloid concentrations in the critical and triple points and along the binodals as a function of q(R). Also the position of the cep is found analytically. In order to make the model applicable to higher size ratio's q(R) (including the so-called protein limit where q(R)>1) further extensions are needed. We introduce the size ratio q=delta/a, where the depletion thickness delta is no longer of order R. In the protein limit the binodal concentrations are above overlap. In such semidilute solutions delta approximately xi, where the De Gennes blob size (correlation length) xi scales as xi approximately phi(-gamma), with gamma=0.77 for good solvents and gamma=1 for a theta solvent. In this limit Pi=Pi(sd) approximately phi(3gamma). We now apply the following additional modifications: With these latter two modifications we obtain again a fully analytical model with simple equations for critical and triple points as a function of q(R). In the protein limit the binodal polymer concentrations scale as q(R)(1/gamma), and phase diagrams phiq(R)(-1/gamma) versus the colloid concentration eta become universal (i.e., independent of the size ratio q(R)). The predictions of this generalized free-volume theory (GFVT) are in excellent agreement with experiment and with computer simulations, not only for the colloid limit but also for the protein limit (and the crossover between these limits). The q(R)(1/gamma) scaling is accurately reproduced by both simulations and other theoretical models. The liquid window is the region between phi(c) (critical point) and phi(t) (triple point). In terms of the ratio phi(t)/phi(c) the liquid window extends from 1 in the cep (here phi(t)-phi(c)=0) to 2.2 in the protein limit. Hence, the liquid window is narrow: it covers at most a factor 2.2 in (external) polymer concentration.  相似文献   

14.
A numerical study of the energetics and tune evolution of the quantum-mechanical Henon-Heiles system does not exhibit any manifestation of the classical transition from quasiperiodic to chaotic motion. Chaotic quantum-mechanical dynamics is manifested by rapid dephasing of initially coherent wavepackets both below and above the classical transition.  相似文献   

15.
In the ultrasonic field, stable silver colloids were produced by the reduction of AgNO3 with the protection of PVP using KBH4 or N2H4·H2O as reductant. The main factors affecting the morphology of silver nanoparticles, such as distribution of the ultrasonic field, ultrasonic time, ultrasonic power, and the species of reductant, were studied. The silver colloids were identified by TEM and spectrophotometry. The results indicate that the factors such as distribution of the ultrasonic field, ultrasonic time, ultrasonic power, and the species of reductant have a great impact on the morphology of the silver nanoparticles. The size of the silver nanoparticles decreases with the ultrasonic power and ultrasonic time increasing. Ag nanoparticles prepared in standing wave field preferentially grow in a certain direction, which is propitious for forming hexagonal-and spherical-like silver nanoparticles. Monodispersed spherical silver nanoparticles are easily synthesized in the diffusion field. The stability of silver colloid becomes improved by ultrasonic treatment. For example, precipitate is not found after several weeks for the silver colloid prepared with an ultrasonic treatment time of 180 min. The silver nanoparticles prepared without ultrasonic treatment are large spherical-like and hexagonal. Well-dispersed spherical silver particles with a mean size of about 20 nm have been prepared under ultrasonic treatment. Spherical, spherical-like, and hexagonal silver nanoparticles can be obtained by changing the reductants. __________ Translated from Journal of Tianjin University, 2006, 39(1) (in Chinese)  相似文献   

16.
Surface-enhanced Raman scattering (SERS) of 4-mercaptopyridine (4-mpy) adsorbed on HNO3 etched silver foil, chemically deposited silver films (silver mirror) and silver colloids were measured. The SERS study has revealed that 4-mpy was adsorbed onto the three kinds of silver surfaces by a sulfur-silver bond with the plane of pyridine ring being normal to the silver substrates. The structure of 4-mpy adsorbed on the silver surfaces depends largely on the pH values of environment. When the pH values of the environment are changed, the structure of 4-mpy adsorbed on silver surfaces can easily be altered through a protonation or deprotonation reaction occurring on the N atom of the pyridine ring, and the modified structure shows unique characters on the SERS spectrum. Owing to the remarkable enhancement ability of SERS technique and characteristic spectrum of different species, a monolayer of 4-mpy assembled on a silver mirror holds potential as a H+ sensor for highly sensitive detection of the proton concentration in an aqueous solution.  相似文献   

17.
When non-adsorbing polymers are added to an isotropic suspension of rod-like colloids, the colloids effectively attract each other via depletion forces. We performed Monte Carlo simulations to study the phase diagram of such rod-polymer mixture. The colloidal rods were modeled as hard spherocylinders; the polymers were described as spheres of the same diameter as the rods. The polymers may overlap with no energy cost, while the overlap of polymers and rods is forbidden. Large amounts of depletant cause phase separation of the mixture. We estimated the phase boundaries of isotropic-isotropic coexistence both in the bulk and in confinement. To determine the phase boundaries we applied the grand canonical ensemble using successive umbrella sampling [J. Chem. Phys. 120, 10925 (2004)], and we performed a finite size scaling analysis to estimate the location of the critical point. The results are compared with predictions of the free volume theory developed by Lekkerkerker and Stroobants [Nuovo Cimento D 16, 949 (1994)]. We also give estimates for the interfacial tension between the coexisting isotropic phases and analyze its power-law behavior on the approach of the critical point.  相似文献   

18.
In this report we demonstrate a green chemical approach for the synthesis of stable silver nanoparticles in aqueous medium using tyrosine as an efficient photoreducing agent. A narrow size distribution of silver nanoparticles can be achieved by this simple photoirradiation method without using any additional stabilizing agents or surfactants. Two different irradiation sources have been explored resulting in a different particle size distribution pattern in each case. Further, we show that starting from a polydisperse tyrosine synthesized silver nanoparticles sample, it is also possible to fractionate them into different size ranges. The size fractionation was achieved by a 2 stage phase transfer method employing different organic solvents. The nanoparticles synthesized were characterized using UV-vis spectroscopy, Transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques.  相似文献   

19.
Research on Chemical Intermediates - Silver nanoparticles stabilized with chitosan biopolymer are a new antibacterial agent for treatment of caries. To determine whether the size and morphology of...  相似文献   

20.
The vibrational spectrum of crystal thymine is calculated by density functional theory (DFT) at the B3LYP complex function. Considering the effect of intermolecular H-bonds, we add two water molecules that can form H-bonds with the CO and NH groups of thymine. The experimental spectra of normal Raman of thymine in solid state and surface enhanced Raman (SERS) of thymine adsorbed in silver colloids are presented in this study. The calculated Raman spectrum of thymine by DFT is in agreement with the experimental result of normal Raman spectrum. The appearance of new bands of thymine in SERS shows that molecules of thymine are adsorbed in the surface of silver nanoparticles with a perpendicular orientation through an oxygen atom (O7).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号