首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase transfer protocols in vogue for the oleic acid capped silver nanoparticles, viz., salt-induced precipitation and redispersion or phosphoric acid-induced method, are examined and compared thoroughly. A comprehensive evaluation with respect to the mechanistic aspects involved is made and the merits and demerits of the different procedures are delineated. It is found that the salt-induced precipitation and redispersion is more versatile in that the precipitate can actually be redispersed in both aqueous and organic media. However, in terms of mechanism both the routes seem to be very similar wherein the orientational change of oleic acid on the silver surface in the two different environments-organic and aqueous-plays a crucial role in the adaptability of the system to the different environments. Subsequently, this change of orientation of oleic acid on silver surface in aqueous and organic media has been utilized to phase transfer Ni-based nanoparticulate systems. The nascent oleic acid-capped Ni nanoparticles, which were synthesized by a foam-based protocol, were dispersible in water but not in nonpolar organic media such as cyclohexane or toluene. Then, just by coating a thin shell of silver on them we could achieve complete phase transfer of the Ni(core)Ag(shell) from aqueous to organic media following similar procedures used for oleic acid-capped silver nanoparticles. Here, the phase transfer seems to be facilitated by the orientational flexibility of oleic acid on the silver surface as opposed to other metal surfaces as evidenced from the infrared and thermogravimetric analyses of oleic acid-capped Ni and Ni(core)Ag(shell) nanoparticles. This orientation-assisted phase transfer method could be generalized and can be adapted to other systems where, if the nascent nanoparticles cannot be phase transferred as is, they can be coated by a silver shell and oleic acid making them suitable for dispersion in both aqueous and organic media.  相似文献   

2.
This paper describes a general method to change the surface property of the oleic acid stabilized silver nanoparticles and successful tranferring of the silver nanoparticles from the organic phase into the aqueous phase. By vigorous shaking of a biphasic mixture of the silver organosol protected with oleic acid and p-sulfonated calix[4]arene (pSC4) aqueous solution, it is believed that an inclusion complex is formed between oleic acid molecules and pSC4, and the protective layer of the silver nanoparticles shifts from hydrophobic to hydrophilic in nature, which drives the transfer of silver nanoparticles from the organic phase into the aqueous phase. The efficiency of the phase transfer to the aqueous solution depends on the initial pSC4 concentration. The pSC4-oleic acid inclusion complex stabilized nanoparticles can be stable for long periods of time in aqueous phase under ambient atmospheric conditions. The procedure of phase transfer has been independently verified by UV-vis, transmission electron microscopy, Fourier transform infrared, and 1H nuclear magnetic resonance techniques.  相似文献   

3.
Poly(N-vinyl-2-pyrrolidone) (PVP) and gelatin protected silver nanostructures are prepared in formamide by simple chemical route. Both PVP and gelatin stabilized silver nanoparticles in formamide lead to the formation of nanostructures of various definite geometric shapes and sizes. The effect of anisotropy on the surface plasmon absorption band is analyzed by monitoring the UV-Visible absorption spectra of gelatin stabilized silver nanoparticles. The particles were characterized by UV-Visible absorption spectra and TEM.  相似文献   

4.
This study deals with the synthesis and physicochemical investigation of silver nanoparticles using an aqueous extract of Monotheca buxifolia (Flac.). On the treatment of aqueous solution of silver nitrate with the plant extract, silver nanoparticles were rapidly fabricated. The synthesized particles were characterized by using UV–visible spectrophotometry (UV), Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray (EDX) and Scanning electron microscopy (SEM). The formation of AgNPs was confirmed by noting the change in colour through visual observations as well as via UV–Vis spectroscopy. UV–Vis spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 440 nm. FTIR was used to identify the chemical composition of silver nanoparticles and Ag-capped plant extract. The presence of elemental silver was also confirmed through EDX analysis. The SEM analysis of the silver nanoparticles showed that they have a uniform spherical shape with an average size in the range of 40–78 nm. This green system showed better capping and stabilizing agent for the fine particles. Further, in vitro the antioxidant activity of Monotheca buxifolia (Flac.) and Ag-capped with the plant was also evaluated using FeCl3/K3Fe (CN)6 essay.  相似文献   

5.
To improve the magnetic fluids’ stability and demonstrate the relationships between the bilayercoated structure and the stability, a simple method was proposed for preparingoleic acid bilayercoated Fe3O4 magnetic fluids. The hydrophilic Fe3O4 nanoparticles coated with the bilayer-oleic acid were synthesised by a one-pot process through the chemical co-precipitation under alkaline conditions. Next, the hydrophilic Fe3O4 particles were transformed to hydrophobic particles via carboxyl-protonated modification. Carboxyl-protonated modification was found to be a reversible process, i.e. the lipophilicity of the coated Fe3O4 nanoparticles could be controlled by protonating/ deprotonating the terminal carboxyl group. In addition, the space steric effect could be significantly enhanced by maximising the oleic acid adsorption and increasing the thickness of the coated layer, resulting in the oleic acid bilayer-coated Fe3O4 nanoparticles exhibiting better performance in the stability of the hexanemagnetic fluids than oleic acid monolayer-coated Fe3O4 nanoparticles.  相似文献   

6.
以抗坏血酸为还原剂,柠檬酸为结构导向剂,一步还原硝酸银,合成了尺寸和形状可调的花状银颗粒。纳米粒子的粒径可在600~1 200 nm范围内调整,表面突起可达到10~25 nm。柠檬酸的化学性质在银纳米粒子合成多级花状银结构的过程中起着至关重要的作用。通过改变柠檬酸或抗坏血酸溶液的用量,银结构的各向异性形貌可以很容易地调节。以制备的多级花状银颗粒作为表面增强拉曼散射(SERS)基底,对浓度为10~(-10)mol·L~(-1)的罗丹明6G(R6G)仍具有较高的检测灵敏度。  相似文献   

7.
Pure tin dioxide (SnO2) nanoparticles were synthesized via thermolysis of tin phthalate and tin oxalate in the presence of oleic acid (OA) as solvent. Oleic acid (OA) was employed as an organic solvent, which can be applied to control particle growth and to stabilize the particles. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) spectroscopy. The orthorhombic phase SnO2 nanoparticles with average size about 12 nm were synthesized through thermolysis of tin phthalate in the presence of oleic acid.  相似文献   

8.
武德珍 《高分子科学》2014,32(4):424-431
Triphase polyimide nanocomposite films were fabricated using barium titanate (BaTiO3) with high dielectric constant and silver (Ag) with high conductivity as fillers. In situ method was utilized to obtain the homogeneous dispersion of nanoparticles. The in situ polymerization of polyimide precursor-poly(amic acid) was performed in the presence of BaTiO3 particles. Silver compound 1,1,1-trifluoro-2,4-pentadionato silver(I) was added into the BaTiO3 containing poly(amic acid) solution to achieve silver nanoparticles via in situ self metallization technique. The thermally induced reduction converted silver (I) to metallic silver with concomitant imidization of poly(amic acid) to polyimide. Both BaTiO3 and silver nanoparticles were uniformly dispersed in the polyimide substrate. The dependence of dielectric behavior on the BaTiO3 and Ag contents was studied. The incorporation of small amount of silver nanoparticles greatly increased dielectric constant of composite films.  相似文献   

9.
Monodisperse superparamagnetic iron oxide nanoparticles of controlled size were synthesized by thermal decomposition of organic iron compounds in different high-boiling solvents in the presence of oleic acid and/or oleylamine. The compounds included Fe(III) oleate and mandelate, formed from FeCl3 and the respective acids. The size of the nanoparticles was easily tuned to 8–27 nm by varying the experimental conditions. The nanoparticles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and magnetization measurements. The hydrophobic coating of the particles was analyzed by thermogravimetric analysis (TGA) and atomic absorption spectroscopy (AAS). To make the particles biocompatible and water dispersible, nontoxic hydrophilic poly(ethylene glycol) derivatives were synthesized and used for phase transfer of hydrophobic particles into water using a ligand-exchange procedure.  相似文献   

10.
The Ag/SiO2 composites were synthesized based on porous blocked silica with a pore size of 30–50 nm and a specific surface area of 99 m2/g. Silver particles were introduced into the pores of the support by its impregnation with a solution of an ammonium complex of silver followed by reduction with hydrogen. The liquid-phase reduction of silver ions in pores was performed in the absence of stabilizing agents with the use of ethylene glycol (a polyol method) or formamide as a reducing agent. The methods used in the preparation of composites made it possible to vary the particle size of silver. The greatest size that is almost comparable with the pore size was achieved with the use of formamide. The catalytic activity of the Ag/SiO2 composites was studied in the reaction of CO oxidation. It was found that the catalysts obtained upon the reduction of Ag+ ions by formamide exhibited considerable low-temperature activity. A necessary condition for the manifestation of low-temperature activity is redox treatment, in the course of which the particle size of silver considerably decreases.  相似文献   

11.
Elaboration of mesostructured silica films with a triblock copolymer polyethylene oxide-polypropylene oxide-polyethylene oxide, (PEO-PPO-PEO) and controlled growth of silver nanoparticles in the mesostructure are described. The films are characterized using UV-visible optical absorption spectroscopy, TEM, AFM, SEM, X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). Organized arrays of spherical silver nanoparticles with diameter between 5 and 8 nm have been obtained by NaBH4 reduction. The size and the repartition of silver nanoparticles are controlled by the film mesostructure. The localization of silver nanoparticles exclusively in the upper-side part of the silica-block copolymer film is evidenced by RBS experiment. On the other hand, by using a thermal method, 40 nm long silver sticks can be obtained, by diffusion and coalescence of spherical particles in the silica-block copolymer layer. In this case, migration of silver particles toward the glass substrate-film interface is shown by the RBS experiment.  相似文献   

12.
This paper compares the performance of three long-chain acids—oleic and elaidic (both olefinic) and stearic (aliphatic)—as a capping agent in the synthesis of magnetic Co nanoparticles. The particles were formed through thermal decomposition of dicobalt octacarbonyl in toluene in the presence of the long-chain acid, and characterized by TEM, high-resolution TEM, and SQUID measurements. Infrared spectra revealed that some of the added olefinic acid was transformed from cis- to trans-configuration (for oleic acid) or from trans- to cis- (for elaidic acid) to facilitate the formation of a densely packed monolayer on the surface of Co nanoparticles. As compared to aliphatic acids, olefinic acids are advantageous for dense packing on small particles with high surface curvatures due to a bent shape of the cis-isomer. The presence of an olefinic acid is able to control particle growth, stabilize the colloidal suspension, and prevent the final product from oxidation by air. Our results indicate that oleic acid, elaidic acid, and a mixture of oleic/stearic acids or elaidic/stearic acids have roughly the same performance in serving as a capping agent for the synthesis of Co nanoparticles with a spherical shape and narrow size distribution.  相似文献   

13.
The Fe3O4 nanoparticles and Fe3O4 nanoparticles coated with oleic acid have been dispersed in base fluid of poly(ethylene glycol) (PEG). Stability and particle size distribution of these nanofluids have been studied by result analysis of UV–Vis spectroscopy, zeta potential and dynamic light scattering. Blue shift of UV–Vis spectra has been related to quantum effects such as band gap enlargement with particle size decreasing and also to effect of oleic acid on the ultraviolet wavelength. Flow behavior and suspension structure of Fe3O4 nanoparticles dispersed in PEG have been determined by rheological properties. Viscosity values of Fe3O4-PEG nanofluid as a function of temperature have also been investigated. The chain-like structure of Fe3O4 nanoparticles coated with oleic acid in base fluid of PEG has been verified by measuring the magnetorheological properties. The effect of temperature on magnetorheological properties of Fe3O4 nanoparticles coated with oleic acid has also been investigated in base fluid of PEG. The volumetric properties of Fe3O4-PEG and Fe3O4 coated with oleic acid–PEG nanofluids and PEG–oleic acid solution have also been measured at different temperatures to specify the suspension structure and also interactions of Fe3O4, PEG and oleic acid molecules.  相似文献   

14.
银溶胶中加入具有双官能团的对氨基苯甲酸分子,功能分子PABA吸附到银粒子上形成Ag-PABA复合物,采用1064nm激发光对复合物进行SERS研究。研究发现,功能分子浓度较低时,b2振动得到极大增强,这是通过功能分子在银纳米粒子间电荷转移的直接结果。浓度较高时,SERS中a1振动占主导地位,因为在这样的体系中,银粒子被功能分子包围,彼此相距较远,跨越粒子的电荷转移被阻断的结果。  相似文献   

15.
Silica sol-gel films were prepared by dipping, starting from an acid catalyzed solution of methyltriethoxysilane (MTES) and tetraethoxysilane (TEOS). Silver metal nanoparticles were produced in the silica layer by introducing in the sol-gel precursor solution AgNO3 or AgClO4·H2O. The silver ions were thermally reduced in air at 800°C, giving an intense yellow coating film. The silver metal particles were observed by transmission electron microscopy and X-ray diffraction. The diameter of the silver particles was found to be about 10 nm. Absorption measurements in the UV-Vis were used to evaluate the volume fraction of silver colloids embedded in the silica layer.  相似文献   

16.
Kinetic data for the silver nitrate–ascorbic acid redox system in presence of three surfactants (cationic, anionic and nonionic) are reported. Conventional spectrophotometric method was used to monitor the formation of surfactant stabilized nanosize silver particles during the reduction of silver nitrate by ascorbic acid. The size of the particles was determined with the help of transmission electron microscope. It was found that formation of stable perfect transparent silver sol and size of the particles depend upon the nature of the head group of the surfactants, i.e., cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulphate (SDS) and Triton X-100. The silver nanoparticles are spherical and of uniform particle size, and the average particle size is about 10 and 50 nm, respectively, for SDS and CTAB. For a certain reaction time, i.e., 30 min, the absorbance of reaction mixture first increased until it reached a maximum, then decreased with [ascorbic acid]. The reaction follows a fractional-order kinetics with respect to [ascorbic acid] in presence of CTAB. On the basis of various observations, the most plausible mechanism is proposed for the formation of silver nanoparticles.  相似文献   

17.
We report on the use of Neem (Azadirachta indica) leaf broth in the extracellular synthesis of pure metallic silver and gold nanoparticles and bimetallic Au/Ag nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with Neem leaf extract, the rapid formation of stable silver and gold nanoparticles at high concentrations is observed to occur. The silver and gold nanoparticles are polydisperse, with a large percentage of gold particles exhibiting an interesting flat, platelike morphology. Competitive reduction of Au3+ and Ag+ ions present simultaneously in solution during exposure to Neem leaf extract leads to the synthesis of bimetallic Au core-Ag shell nanoparticles in solution. Transmission electron microscopy revealed that the silver nanoparticles are adsorbed onto the gold nanoparticles, forming a core-shell structure. The rates of reduction of the metal ions by Neem leaf extract are much faster than those observed by us in our earlier studies using microorganisms such as fungi, highlighting the possibility that nanoparticle biological synthesis methodologies will achieve rates of synthesis comparable to those of chemical methods.  相似文献   

18.
In the ultrasonic field, stable silver colloids were produced by the reduction of AgNO3 with the protection of PVP using KBH4 or N2H4·H2O as reductant. The main factors affecting the morphology of silver nanoparticles, such as distribution of the ultrasonic field, ultrasonic time, ultrasonic power, and the species of reductant, were studied. The silver colloids were identified by TEM and spectrophotometry. The results indicate that the factors such as distribution of the ultrasonic field, ultrasonic time, ultrasonic power, and the species of reductant have a great impact on the morphology of the silver nanoparticles. The size of the silver nanoparticles decreases with the ultrasonic power and ultrasonic time increasing. Ag nanoparticles prepared in standing wave field preferentially grow in a certain direction, which is propitious for forming hexagonal-and spherical-like silver nanoparticles. Monodispersed spherical silver nanoparticles are easily synthesized in the diffusion field. The stability of silver colloid becomes improved by ultrasonic treatment. For example, precipitate is not found after several weeks for the silver colloid prepared with an ultrasonic treatment time of 180 min. The silver nanoparticles prepared without ultrasonic treatment are large spherical-like and hexagonal. Well-dispersed spherical silver particles with a mean size of about 20 nm have been prepared under ultrasonic treatment. Spherical, spherical-like, and hexagonal silver nanoparticles can be obtained by changing the reductants. __________ Translated from Journal of Tianjin University, 2006, 39(1) (in Chinese)  相似文献   

19.
Study on the properties and stability of ionic liquid-based ferrofluids   总被引:1,自引:0,他引:1  
Ionic liquid (IL)-based ferrofluids have been prepared dispersing both bare and sterically stabilized CoFe2O4 nanoparticles. The precipitated particles were characterized by X-ray diffraction, scanning electronic microscopy, transmission electron microscopy, Fourier transform infrared, and vibrating sample magnetometry studies. The water-absorbing property of ferrofluids at ambient temperature was estimated by weight and viscosity measurements. Colloidal dispersion stability of the ferrofluids was evaluated by particle suspension percentage. Experimental results indicate that interparticle electrostatic repulsion is not effective in stabilizing bare magnetic particles in IL. There is no significant increase on the dispersion stability when the particles were coated with a monolayer of oleic acid. The reason could be caused by the incompatibility between the nonpolar tail of surfactant and carrier liquid. When excess oleic acid was added into IL, stable magnetic colloid was achieved by a steric stabilization layer coated to be compatible with the IL.  相似文献   

20.
超声辐射法制备银纳米微粒   总被引:2,自引:2,他引:0  
在有机介质十氢化萘中,以金属钠、硝酸银和油酸钠为起始原料,通过超声辐射使金属钠和硝酸银发生置换反应,成功制备了油酸表面修饰的Ag纳米微粒.采用透射电子显微镜、X射线粉末衍射仪和热分析仪对其形貌、结构和性能进行了表征.透射电镜和X射线粉末衍射研究表明:所制备的油酸表面修饰Ag纳米微粒粒径较小,平均尺寸为10 nm,分布均匀,无团聚现象,且具有面心立方晶型结构.热分析结果表明:所制备的样品含有约9.7%的有机物,并具有良好的热稳定性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号