首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Journal of Thermal Analysis and Calorimetry - Energy efficient buildings are unimaginable without highly insulating thermal envelopes. Mineral wool among others is a popular material for thermal...  相似文献   

2.
Composites of a fumed silica industrial residue and an epoxy resin were prepared and their thermal stability and thermal degradation behaviour were studied by TGA in air. Classical thermal stability parameters, based on the initial decomposition temperature (IDT), temperature of maximum rate of mass loss (Tmax) and integral procedure decomposition temperature (IPDT) were calculated before and after subtraction of the filler mass from the TGA curves. Without filler mass subtraction, the thermal stability of the epoxy resin seems to be improved and the mass loss rate was reduced by the addition of fumed silica. Nevertheless, after subtraction of the filler mass, the thermal degradation behaviour of the resin was only slightly affected by the silica content. A possible negative effect of the silica content on the cure was also found.  相似文献   

3.
4.
The optimization of the surface functionalization of flat thermal silicon oxide by silanes was investigated. The difficulties are the low density of silanols at the surface of thermal silica, the lack of precise knowledge of the actual surface chemistry of thermal silica and of its hydroxylation, and the limited number of possible chemical analyses at flat surfaces of small area. This steered our study toward a comparative investigation of the hydroxylation and silane grafting of thermal silica and the well-known fumed silica. The silane grafting density for fumed silica that had undergone thermal treatments of dehydroxylation was related to the surface density of silanols. The surface density of silane on the flat thermal silica as measured by FTIR-ATR spectroscopy was 1.4 micromol/m2, similar to that of fumed silica dehydroxylated at 1000 degrees C. This moderate value was related to the low silanol density present on such silica surfaces. Several rehydroxylation treatments that proved their efficiency on dehydroxylated fumed silica did not lead to any noticeable improvement on thermal silicon dioxide.  相似文献   

5.
The paper presents, based on TG-DTG-DSC data, some results of the thermal decomposition of some complex sol-gel precursors used for the deposition of mesoporous ZnO/SiO2 nanocomposite thin films for gas sensing applications. The effect chemical composition of the sol and reagents mixing during the sol preparation is discussed. The chemical nature of ZnO source (zinc acetate solid salt, zinc acetate alcoholic solution or ZnO nanopowder) used for the sol preparation significantly affects the thermal decomposition of complex precursor and the microstructure and properties of the nanocomposite thin films.  相似文献   

6.
Effect of homologous of nano-composites on the thermal degradation of the silicone resin was researched based on graphene oxide (GO)/polyhedral oligomeric silsesquioxane (POSS). First, the amino-POSS was grafted onto the GO surface (GO/POSS) via the amide bond. Second, GO/POSS was incorporated into the silicone with active epoxy group via chemistry grafting. The reaction kinetics of the thermal decomposition of the epoxy–silicone resin based on nano-composite homologous effect is developed. The initial decomposition temperature of the modified silicone resin is improved by 77.2°C. At high temperatures, GO/POSS-modified silicone molecular end forms homologous nano-structures, which can restrain silicone future degradation. The developed strategy has potential to restrain the degradation of the polymer molecular chain.  相似文献   

7.
Journal of Thermal Analysis and Calorimetry - The reduction of radiation heat transfer in VIPs is an important issue. In VIPs, the radiation heat transfer is reduced by the use of opacifier....  相似文献   

8.
The purpose of the study was to investigate the effects of three kinds of flame retardant (FR), boric acid, zinc borate, and borax on the thermal curing behavior of urea–formaldehyde (UF) resin. Both pH value and gel time were measured to study the curing characters of the UF resin with different loading levels of FR. In addition, differential thermal analysis was also used to obtain kinetic analyses parameter. The results showed that boric acid decreased pH value of UF resin, and reduced gel time of the UF resin. There are no significant changes of the UF resin curing characters with different loading levels of FR. The activation energies for curing reaction of UF resins in the presence of boric acid, zinc borate, and borax, were 84.37, 84.41, and 118.4 kJ/mol, respectively, higher than that of the control one (75.38 kJ/mol). All FRs showed adverse effect on the curing behavior of the UF resin.  相似文献   

9.
The fundamental properties of tertiary pyridine resin (TPR) and its mixtures with methanol/HCl and HNO3 were investigated in order to evaluate the thermal stability of TPR and to determine the conditions necessary to avoid runaway reactions. Based on experimental DSC results, it was found that TPR with HCl was thermally stable, but strong decomposition was possible with TPR in the presence of HNO3. From the results of heating tests on the gram scale, TPR with HNO3 reacted violently under high temperature regardless of HNO3 concentration and presence or absence of methanol. However, it was considered that the violent exothermic reaction could be controlled by heating temperature.  相似文献   

10.
Dielectric measurements have been performed at several frequencies on samples of a cycloaliphatic epoxy resin filled with aluminum hydroxide. The samples were thermally treated at three different temperatures for times up to 2,000 hours. At low aging temperatures and times an improvement of the characteristics is observed due perhaps to an assessment of the bulk of the polymer and more precisely to a change in the free volume. At high temperatures and times a thermo-oxidation involving layers deeper and deeper becomes the predominant mechanism responsible of the decrease in the properties with respect to the virgin material. T g, tan and versust a, generalized curves are finally presented useful to predict the behaviour for aging times not easily experienced.Thanks are due to Magrini-Galileo, Italy, for supplying the samples and to C.N.R., Italy, for financial support.  相似文献   

11.
Nanocomposites from nanoscale silica particles(NS),diglycidylether of bisphenol-A based epoxy(DGEBA),and 3,5-diamino-N-(4-(quinolin-8-yloxy) phenyl) benzamide(DQPB) as curing agent were obtained from direct blending of these materials.The effect of nanosilica(NS) particles as catalyst on the cure reaction of DGEBA/DQPB system was studied by using non-isothermal DSC technique.The activation energy(E_a) was obtained by using Kissinger and Ozawa equations. The E_a value of curing of DGEBA/DQPB/10%NS system showed a decrease of about 10 kJ/mol indicating the catalytic effect of NS particles on the cure reaction.The E_a values of thermal degradation of the cured samples of both systems were 148 kJ/mol and 160 kJ/mol,respectively.The addition of 10%of NS to the curing mixture did not have much effect on the initial decomposition temperature(T_i) but increased the char residues from 20%to 28%at 650℃.  相似文献   

12.
In this study a new melamine-terephthaldehyde resin modified graphene oxide was synthesized and used as a reinforcement of poly(vinyl chloride) (PVC). Characterization, morphology, thermal and mechanical properties of the nanocomposites were examined by means of attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray diffraction, field emission-scanning electron microscopy, thermogravimetric analysis, differential scanning calorimeter and tensile properties. The first hydrochloric acid releasing data of poly(vinyl chloride) was removed by incorporation of the modified graphene oxide as compare to the neat polymer. The temperatures at 2 wt% losses, main decomposition temperatures, maximum decomposition temperatures, also shift to higher temperature in the corresponding nanocomposites as compared to the neat PVC. The tensile strength and elongation at break of the nanocomposite films was increased as compared to the neat PVC. The interesting results in crystallinity of PVC were observed with adding 5 wt% of the modified graphene oxide.  相似文献   

13.
Methylsilicone resin/polyhedral oligomeric silsesquioxane (POSS) composites with various proportions of POSS monomer were synthesized by the reaction of functionalized TriSilanolIsobutyl-POSS macromonomer with hydroxyl-terminated methylsilicone resin. The structures of the obtained hybrid polymers were characterized with Fourier-transformed infrared (FT-IR) and transmission electron microscopy (TEM). The FT-IR spectra suggested successful bonding of TriSilanolIsobutyl-POSS and methylsilicone resin. TEM analysis showed that POSS can dissolve in methylsilicone resin at the molecular level. The influences of TriSilanolIsobutyl-POSS on the thermal stability and degradation behavior of methylsilicone resin were studied by thermogravimetric analysis (TGA), solid-state 29Si NMR and X-ray photoelectron spectroscopy (XPS). All these techniques showed that TriSilanolIsobutyl-POSS incorporation results in increased decomposition temperatures and oxidation resistance, primarily by reducing the effect of silanol end groups on the thermolysis through condensation reaction of Si-OH groups and partial loss of isobutyl followed by the formation of an inorganic SiO2 layer to prevent methylsilicone from further degradation.  相似文献   

14.
Nanocomposites of poly(l-lactic acid) (PLLA) containing 2.5 wt% of fumed silica nanoparticles (SiO2) and organically modified montmorillonite (OMMT) were prepared by solved evaporation method. From SEM micrographs it was observed that both nanoparticles were well dispersed into PLLA matrix. All nanocomposites exhibited higher mechanical properties compared to neat PLLA, except elongation at break, indicating that nanoparticles can act as efficient reinforcing agents. Nanoparticles affect, also, the thermal properties of PLLA and especially the crystallization rate, which in all nanocomposites is faster than that of neat PLLA. From the thermogravimetric curves it can be seen that neat PLLA nanocomposites present a relatively better thermostability than PLLA, and this was also verified from the calculation of activation energy (E). From the variation of E with increasing degree of conversion it was found that PLLA/nanocomposites decomposition takes place with a complex reaction mechanism, with the participation of two different mechanisms. The combination of models, nth order and nth order with autocatalysis (Fn–Cn), for PLLA and PLLA/OMMT as well as the combination of Fn–Fn for PLLA/SiO2 give the better results. For the PLLA/OMMT the values of the E for both mechanisms are higher than neat PLLA. For the PLLA/SiO2 nanocomposite the value of the E is higher than the corresponding value for PLLA, for the first area of mass loss, while the E of the second mechanism has a lower value.  相似文献   

15.
Three commercialized flame retardants, 1,2‐bis(diphenylphosphinoyl)ethane (EDPO), 6,6‐(1,2‐phenethyl)bis‐6H‐dibenz[c,e][1,2]oxaphosphorin‐6,6‐dioxide (HTP‐6123), and hexa‐phenoxy‐cyclotriphosphazene (HPCTP), were used to prepare the flame retardant diglycidyl ether of bisphenol A (DGEBA) epoxy resin (EP) under the same experimental conditions. The effects of Tg, thermal stability, and water absorption properties of EP caused by the three flame retardants were investigated and compared, together with their flame retardant efficiency. Results showed that the introduction of the three flame retardants improved the flame retardant performance of EP but led to decreases in Tg and decomposition temperature. EDPO showed higher flame retardant efficiency than the other two flame retardants. EP/EDPO showed higher thermal stability, better flame retardant performance, higher Tg value, and lower water absorption than EP/HTP‐6123 and EP/HPCTP. The study discovered that EDPO and HTP‐6123 primarily act through the gas phase flame retardant mechanism, while HPCTP is primarily driven by the condensed phase mechanism.  相似文献   

16.
The thermal decomposition of the epoxy resin system, MY720 (70 wt % tetraglycidyl diaminodiphenyl methane), cured with Eporal (diamino diphenyl sulfone), was investigated at 125–215°C. The primary decomposition product was propenal. Several other aldehydes were observed; however, they are formed during cure and are not thermal decomposition products. The apparent activation energy for the production of propenal was 67 kJ/mol (16 kcal/mol). Possible mechanisms for the source of this compound are discussed.  相似文献   

17.
The effect exerted by thermal aging in air at 350°C on the thermal and mechanical properties of composite films prepared on the basis of heat-resistant polyimide PM and non-film-forming polymethylphenylsiloxane (PMPS) was examined. The phase segregation of polymeric composites of various compositions and the thermal aging rate were evaluated.  相似文献   

18.
《European Polymer Journal》1987,23(7):563-569
Various parameters were found to be important in the cure of epoxy resin, those concerned with the kinetics of the heat evolved from the reaction (such as the order, rate constant and activation energy) and those related to the thermal properties of the resin, such as thermal diffusivity and heat capacity. An important parameter in this case was also studied, viz. the coefficient of the heat transfer through the heated fluid-mould interface, controlled by convection. After modelling successfully the process with a numerical method with finite differences, each of the parameters was tested in turn, by considering the temperature and state of cure-history at the middle of the resin cured in a cylindrical mould. Some parameters were found to be significant in the cure, such as the cure enthalpy and heat capacity, the activation energy and the coefficient of heat transferred by convection. This new knowledge allowed further insight into the process of cure for thermosets.  相似文献   

19.
20.
The epoxy resin containing a typical mesogenic group such as biphenol was cured with catechol novolak and aromatic diamines which have neighboring active hydrogens. In the biphenol-type epoxy resin cured with catechol novolak, 4,4′ diaminodiphenylmethane, and p-phenylenediamine (PPD), the glass-rubber transition almost disappeared, and thus a very high elastic modulus was obtained in the high temperature region. It is clear that the thermal motion of the network chains is significantly suppressed in these cured systems. In addition, in the PPD-cured system, a characteristic pattern like a schlieren texture was clearly observed under the crossed polarized optical microscope. Thus we conclude that the mesogenic group contained in the epoxy molecule is oriented in the networks when the mesogenic epoxy resin is cured with phenols and diamines which have neighboring active hydrogens. On the other hand, the biphenol-type resin cured with 3,3′,5,5′-tetraethyl-4,4′-diamino diphenylmethane (TEDDM) showed a well-defined glass-rubber transition and, thus, a low rubbery modulus. In this cured system, no characteristic pattern was observed under the crossed polarized light. These results show that the large branches, such as ethyl groups on the network chains, prevent the orientation of network chains which contain the mesogenic group. © 1997 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号