首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By using a vectorial approach, the validity of paraxial approximation in second harmonic generation (SHG) microscopy under low numerical aperture (NA) is examined when the sample is a collagen fibril. Due to the larger value of dzzz and tensorial nature of SHG, the component Ez of the focused fieM may have strong effect on the radiation pattern of SHG. Numerical results indicate that when the value of NA exceeds 0.3, the effect of Ez can not be neglected, which results in the invalidation of paraxial approximation in SHG microscopy despite the fact that SHG microscopy is still under low NA focusing.  相似文献   

2.
Silicon nanoparticles formed using low energy (<50 keV) silver ion implantation in crystalline Si exhibit broad band light emission from ultraviolet (UV) to green. The formation of nanoparticles is confirmed using high resolution electron microscopy (HRTEM) and the resulting microscopy is used to obtain the size distribution of Si nanoparticles. Photoluminescence (PL) spectra were observed in the range of the UV to the green. The origin of emission is most likely from highly localized defects at the Si/SiO2 which is further confirmed from Photoluminescence Excitation (PLE) and effective mass theory estimation.  相似文献   

3.
Melanophila acuminata beetles are attracted to forest fires over long distances by a pair of specialized infrared sensory organs. To date, there is no knowledge of their ability to detect or emit fluorescent radiation. We studied the Melanophila acuminata infrared sensory organs histologically and by using fluorescent microscopy, acoustic-optic tunable filter microscopy, and two-photon microscopy to identify fluorescence. We found fluorescent absorption at radiation wavelengths of 480 nm and emission at 570 nm. The functional role of this novel fluorescence is, as of yet, unknown but may be applied to species classification, identification and behavioral studies.  相似文献   

4.
TiO2 film of around 850 nm in thickness was deposited on a soda-lime glass by PVD sputtering and irradiated using one pulse of krypton-fluorine (KrF) excimer laser (wavelength of 248 nm and pulse duration of 25 ns) with varying fluence. The color of the irradiated area became darker with increasing laser fluence. Irradiated surfaces were characterized using optical microscopy, scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Surface undergoes thermal annealing at low laser fluence of 400 and 590 mJ/cm2. Microcracks at medium laser fluence of 1000 mJ/cm2 are attributed to surface melting and solidification. Hydrodynamic ablation is proposed to explain the formation of micropores and networks at higher laser fluence of 1100 and 1200 mJ/cm2. The darkening effect is explained in terms of trapping of light in the surface defects formed rather than anatase to rutile phase transformation as reported by others. Controlled darkening of TiO2 film might be used for adjustable filters.  相似文献   

5.
A new route to obtain metal oxide nanotubes is presented: an inorganic coordination complex precursor containing the metal ions and impregnated into alumina membrane templates yield hollow tubular nanostructures of LaNiO3 by calcination at 600 °C as characterized by powder X-ray diffraction (XRD). Scanning electron microscopy (SEM) shows that the resulting nanotubes have 200 nm in diameter in good agreement with the template pore. Transmission electron microscopy (TEM) and dark field transmission electron microscopy (DF-TEM) show that the nanotubes with 10-20 nm walls and internal separations are composed of 3-5 nm crystals.  相似文献   

6.
We have investigated the diffusion of oxygen through evaporated platinum films on Si(100) upon exposure to air using substrates covered with Pt films of spatially and continuously varying thickness (0–500 Å). Film compositions and morphologies before and after silicidation were characterized by modified crater edge profiling using scanning Auger microscopy, energy-dispersive X-ray microanalysis, scanning tunneling microscopy, and transmission electron microscopy. We find that oxygen diffuses through a Pt layer of up to 170 Å forming an oxide at the interface. In this thickness range, silicide formation during annealing is inhibited and is eventually stopped by the development of a continuous oxide layer. Since the platinum film consists of a continuous layer of nanometer-size crystallites, grain boundary diffusion of oxygen is the most probable way for oxygen incorporation. The diffusion constant is of the order of 10–19 cm2/s with the precise value depending on the film morphology.  相似文献   

7.
The effects of adhesion hysteresis in the dynamic‐dissipation curves measured in amplitude‐modulation atomic force microscopy are discussed. Hysteresis in the interaction forces is shown to modify the dynamics of the cantilever leading to different power dissipation curves in the repulsive and attractive regimes. Experimental results together with numerical simulations show that power dissipation, as measured in force microscopy, is not always proportional to the energy dissipated in the tip–sample interaction process. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Cu-Zn/ZnO nanocomposites with a novel core-shell structure have been prepared by a surface precipitation process in aqueous solution. X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy are employed to analyze the structure and morphology of the present products. The influence of the annealing temperature on the core-shell structure of the nanocomposites is investigated, and a possible growth model is proposed. Furthermore, the gas sensors based on the Cu-Zn/ZnO nanocomposites are fabricated and tested, which exhibits high sensitivity and fast response to CO. The best results are obtained for the sensor based on the film annealed at 350 °C, which shows that the sensitivity is about 6.3 when the sensor is exposed to 100 ppm CO at the operating temperature of 240 °C. The possible sensing mechanism of the Cu-Zn/ZnO sensing film has also been discussed.  相似文献   

9.
The morphology of materials resulting from laser irradiation of the single-layer and the multilayer amorphous Ge2Sb2Te5 films using 120 fs pulses at 800 nm was observed using scanning electron microscopy and atomic force microscopy. For the single-layer film, the center of the irradiated spot is depression and the border is protrusion, however, for the multilayer film, the center morphology changes from a depression to a protrusion as the increase of the energy. The crystallization threshold fluence of the single-layer and the multilayer film is 22 and 23 mJ/cm2, respectively.  相似文献   

10.
Au/Co(4–8 ML)/Au single magnetic layers and Au(8 ML)/Co(4 ML)/Au(8 ML)/Co(8 ML)/Au bilayer were sequentially grown by electrodeposition on an Au(1 1 1) buffer layer electrodeposited on Si(1 1 1). The technique used in this work provides full control on the structure and the chemical composition of the different layers (no alloying) as well as on the chemistry at interfaces. scanning tunneling microscopy (STM) and atomic force microscopy (AFM) imaging and X-ray diffraction measurements show that atomically flat continuous Co(0 0 0 1) layers (4–8 ML) can be grown in epitaxy with the Au(1 1 1) substrate and that the 2 nm-thick spacer is also a continuous Au(1 1 1) layer. The Co ultrathin layers (4 and 8 ML) exhibit perpendicular magnetic anisotropy. The lateral magnetic homogeneity and magnetization reversal process have been investigated by scanning magneto-optical Kerr effect (MOKE) magnetometry and global Kerr microscopy. The correlation between magnetization switching behaviour in each layer of the Co-bilayer stack has been evidenced from in-depth sensitive MOKE measurements and microscopy. The strong coupling observed between the two Co layers is attributed to magnetostatic interaction at domain wall boundaries.  相似文献   

11.
We investigate spin domain mapping of a CrO2 thin film using spin-polarized current microscopy at room temperature, where conductive atomic force microscopy (CAFM) with a CrO2-coated tip is used. The nanoscale spin domains of the CrO2 thin film were crosschecked by magnetic force microscopy (MFM). Notably, the CAFM exhibits the spin domains of the CrO2 thin film with higher resolution than the MFM, which may result from a local point contact between the nanoscale CrO2-coated tip and surface of the CrO2 thin film.  相似文献   

12.
Rare earth metal seed Tb was employed as catalyst for the growth of GaN wires. GaN nanowires were synthesized successfully through ammoniating Ga2O3/Tb films sputtered on Si(1 1 1) substrates. The samples characterization by X-ray diffraction and Fourier transform infrared indicated that the nanowires are constituted of hexagonal wurtzite GaN. Scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy showed that the samples are single-crystal GaN nanowire structures. The growth mechanism of the GaN nanowires is discussed.  相似文献   

13.
Alkaline chemical synthesis of amorphous CdCr2S4 (CCS) thin films of different thicknesses using cadmium chloride, chromic acid, disodium salt of ethylenediaminetetra acetic acid and thiourea precursors is reported, and the structural and surface morphological properties of CCS using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) techniques are discussed. Films of aggregated grains with some void spaces are obtained. Change in band gap energy and electrical resistivity of CCS films are discussed as a function of film thickness. n-type conductivity is confirmed from the sign of thermally generated voltage across the cold and hot junctions.  相似文献   

14.
Centimetre-long ZnO fibres are synthesized by vapour transportation via thermal evaporation of ZnO powders. The growth process is carried out in a graphite crucible, in which ZnO powder is loaded as the source material, and a silicon wafer is positioned on the top of the crucible as the growth substrate. During the growth process, the source temperature is kept at 800℃ and the substrate temperature is kept at 600℃. Typical growth time to obtain centimetre-long ZnO fibres is 5-10 hours. Scanning electron microscopy (SEM), x-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) measurement results show that ZnO fibres are single crystalline with high crystalline quality and very low defects concentration.  相似文献   

15.
Novel porous ZnO nanobelts were successfully synthesized by heating layered basic zinc acetate (LBZA) nanobelts in the air. The precursor of LBZA nanobelts consisted of a lamellar structure with two interlayer distances of 1.325 and 0.99 nm were prepared using a low-temperature, solution-based method. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and infrared spectroscopy are used to characterize the as-products. PL measurements show that the porous ZnO nanobelts have strong ultraviolet emission properties at 380 nm, while no defect-related visible emission is detected. The good performance for photoluminescence emission makes the porous ZnO nanobelts promising candidates for photonic and electronic device applications.  相似文献   

16.
The fractal dimensions of six differently mechanically pre-treated stainless steel samples were investigated using five fractal algorithms. The surfaces were analyzed using a profiler, atomic force microscopy (AFM), scanning electron microscopy (SEM) and light microscopy (LM), and thereafter adhesively bonded and tested in single-overlap joints to test their tensile strength. All samples showed different fractal behavior, depending on the microscopic methods and fractal algorithms. However, the overall relation between fractal dimension and tensile strength is qualitatively the same, except for the SEM images. This verifies that tensile strength is correlated to fractal dimension, although only within the length-scale of the profiler and the light microscope (≈0.5–100 μm). The AFM method was excluded in this comparison, since the limitation in the z-direction for the AFM scanner made it difficult to scan the rougher parts of the blasted samples. The magnitude of the surfaces is a parameter not often considered in fractal analysis. It is shown that the magnitude, for the Fourier method, is correlated to the arithmetic average difference, Ra, but only weakly to the fractal dimension. Hence, traditional parameters, such as Ra, tell us very little about the spatial distribution of the elevation data. Received: 22 December 1999 / Accepted: 9 October 2000 / Published online: 9 February 2001  相似文献   

17.
Patterned uniformly (100)-orientated silicon nanocrystallite (SiNC) films were fabricated based on hydrogen ion implantation technique and typical electrochemical anodic etching method. The surface morphology and microstructure characteristics of the films were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and atomic force microscopy. The efficient field emission with low turn-on field of about 3.2 V/μm at current density of 0.1 μA/cm2 was obtained. The emission current density from the SiNC films reached 1 mA/cm2 under a bias field of about 11 V/μm. The experimental results demonstrate that the SiNC films have great potential applications for flat panel displays.  相似文献   

18.
The present study evaluates the wear performance of silicon-germanium (SiGe) epitaxial growth of thin films, in which the in situ scratch profile is followed by ex situ atomic force microscopy (AFM) examinations. The wear evaluation of SiGe films was carried out at different constant loads (2000, 4000, and 6000 μN) with the same sliding speeds. The microstructural morphology was observed by means of transmission electron microscopy (TEM)Findings show that annealing treatments of SiGe films exhibit the highest scratch resistance at 400 °C compared to that of the as-deposited sample. The main characteristic of SiGe film is its ability to withstand wear resistance; observations show that moderate compressive residual is beneficial to the film, since it can suppress crack initiation. The annealing treatments of SiGe films revealed the resultant adhesive and cohesive failure mechanism.  相似文献   

19.
The polycrystalline ruthenium films are grown on TaN substrates by atomic layer deposition (ALD) using bis(cyclopentadienyl) ruthenium [RuCp2] and oxygen as ruthenium precursor and reactant respectively at a deposition temperature of 330℃. The low-energy Ar ion bombardment and Ru pre-deposition are performed to the underlying TaN substrates before ALD process in order to improve the Ru nucleation. X-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy are carried out to characterize the properties of ALD Ru films. The results show that the nucleation density of Ru films with Ar^+ bombardment to the underlying TaN substrates is much higher than that of the ones without any pretreatment. The possible reasons are discussed.  相似文献   

20.
Wurtzite ZnO nanonails on silicon substrate were successfully synthesized by thermal vapor transport and condensation method at a low temperature without a metal catalyst. Pure Zn powders were used as raw material and O2/Ar powders as source gas. The products were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The results show that the deposited nanostructures include aligned ZnO nanonails. The ZnO nanonails, with crystalline cap and small-diameter shafts, grow along the c-axis. The optical properties have been revealed by photoluminescence spectra. We considered that the ZnO nanonails growth is a vapor-solid process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号