首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 588 毫秒
1.
Polyaniline-modified tin oxide and tin oxide nanoparticles were synthesized using a solution route technique. The obtained pristine products were characterized with X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, and optical absorption spectroscopy. Thermogravimetric analysis results showed that the polyaniline-modified SnO2 nanoparticles exhibit higher thermal stability than the SnO2 nanoparticles. Scanning electron microscopy analysis on the as-synthesized powders showed spherical particle in the range of 50–100 nm.  相似文献   

2.
We report a method by which we have produced nano-sized crystalline tin oxide (SnO2) particles with a rutile structure. We have employed thermal evaporation of solid Sn powders in ambient air. Samples were characterized by scanning electron microscopy, X-ray powder diffraction, transmission electron microscopy, and photoluminescence (PL) spectroscopy. The size of SnO2 particles in an agglomerated state was found to decrease on decreasing the synthesis temperature in the range of 700–850 °C. The product synthesized at a low temperature of 700 °C was comprised of a trace amount of tetragonal SnO phase. Photoluminescence spectra showed visible light emission, with its overall intensity being increased on increasing the synthesis temperature. PACS 81.07.Wx; 81.05.Hd; 61.10.Nz; 68.37.Hk; 68.37.Lp  相似文献   

3.
The layered LiNi0.5Mn0.47Al0.03O2 was synthesized by wet chemical method and characterized by X-ray diffraction and analysis of magnetic measurements. The powders adopted the α-NaFeO2 structure. This substitution of Al for Mn promotes the formation of Li(Ni0.472+Ni0.033+Mn0.474+Al0.033+)O2 structures and induces an increase in the average oxidation state of Ni, thereby leading to the shrinkage of the lattice unit cell. The concentration of antisite defects in which Ni2+ occupies the (3a) Li lattice sites in the Wyckoff notation has been estimated from the ferromagnetic Ni2+(3a)–Mn4+(3b) pairing observed below 140 K. The substitution of 3% Al for Mn reduces the amount of antisite defects from 7% to 6.4–6.5%. The analysis of the magnetic properties in the paramagnetic phase in the framework of the Curie–Weiss law agrees well with the combination of Ni2+ (S = 1), Ni3+ (S = 1/2) and Mn4+ (S = 3/2) spin-only values. Delithiation has been made by the use of K2S2O8. According to this process, known to be softer than the electrochemical one, the nickel ions in the (3b) sites are converted into Ni4+ in the high spin configuration, while Ni2+(3a)–Mn4+(3b) ferromagnetic pairs remain, as the Li+(3b) ions linked to the Ni2+(3a) ions in the antisite defects are not removed. The results show that the antisite defect is surrounded by Mn4+ ions, implying the nonuniform distribution of the cations in agreement with previous NMR and neutron experiments.  相似文献   

4.
Well-aligned Co3O4 nanotubes were synthesized within the nanochannels of porous anodic alumina membranes using a single-source chemical vapor deposition method. Scanning electron microscopy and transmission electron microscopy showed that the Co3O4 nanotubes are highly ordered with uniform diameter in the range of 100–300 nm and length up to tens of microns. X-ray diffraction, the Raman spectrum, energy-dispersive spectroscopy and selected-area electron diffraction demonstrated that the nanotubes are composed of pure cubic phase polycrystalline Co3O4. Magnetic measurements using a SQUID magnetometer suggested the presence of a strong antiferromagnetic interaction with Weiss constant θ= -248 K. The real and imaginary parts of the ac susceptibility at f= 10 Hz had a maximum at 4.0 K, and the field dependence of the magnetization at 1.8 K showed a small hysteresis loop with a coercivity of ∼ 98 Oe. PACS 81.07.De; 81.15.Gh; 78.30.-j; 75.75.+a; 61.46.Np  相似文献   

5.
N. Hannachi  K. Guidara  F. Hlel 《Ionics》2011,17(5):463-471
The Ac electrical conductivity and the dielectric relaxation properties of the [(C3H7)4N]2Cd2Cl6 polycrystalline sample have been investigated by means of impedance spectroscopy measurements over a wide range of frequencies and temperatures, 209 Hz–5 MHz and 361–418 K, respectively. The purpose is to make a difference between the electrical and dielectric properties of the polycrystalline sample and single crystal. Besides, a detailed analysis of the impedance spectrum suggests that the electrical properties of the material are strongly temperature-dependent. Plots of (Z" versus Z') are well fitted to an equivalent circuit model consisting of a series combination of grains and grains boundary elements. Moreover, the temperature dependence of the electrical conductivity in the different phases follows the Arrhenius law and the frequency dependence of σ (ω) follows the Jonscher’s universal dynamic law. Furthermore, the modulus plots can be characterized by full width at half height or in terms of a nonexperiential decay function φ(t) = exp(t/t)β. Finally, the imaginary part of the permittivity constant is analyzed with the Cole–Cole formalism.  相似文献   

6.
Diluted magnetic semiconductor (DMS) nanoparticles of Sn1−x Er x O2 (x = 0.0, 0.02, 0.04, and 0.1) were prepared by sol–gel method. The X-ray diffraction patterns showed SnO2 rutile structure for all samples with no impurity peaks. The decrease in crystallite size with Er concentration was confirmed from TEM measurements (from 12 to 4 nm). The UV–Visible absorption spectra of Er-doped SnO2 nanoparticles showed blue shift in band gap compared to undoped SnO2. The electron spin resonance analysis of Er-doped SnO2 nanoparticles indicate Er3+ in a rutile lattice and also decrease in intensity with Er concentration above x = 0.02. Temperature-dependent magnetization studies and the inverse susceptibility curves indicated increased antiferromagnetic interaction with Er concentration.  相似文献   

7.
The [N(CH3)4][N(C2H5)4]ZnCl4 compound has been synthesized by a solution-based chemical method. The X-ray diffraction study at room temperature revealed an orthorhombic system with P21212 space group. The complex impedance has been investigated in the temperature and frequency ranges 420–520 K and 200 Hz–5 MHz, respectively. The grain interior and grain boundary contribution to the electrical response in the material have been identified. Dielectric data were analyzed using the complex electrical modulus M * for the sample at various temperature. The modulus plots can be characterized by full width at half height or in terms of a non-exponential decay function ϕ(t) = exp[(−t/τ) β ]. The detailed conductivity study indicated that the electrical conduction in the material is a thermally activated process. The variation of the AC conductivity with frequency at different temperatures obeys the Almond and West universal law.  相似文献   

8.
We have studied photoluminescence and thermoluminescence (PL and TL) in CaGa2Se4:Eu crystals in the temperature range 77–400 K. We have established that broadband photoluminescence with maximum at 571 nm is due to intracenter transitions 4f6 5d–4f7 (8S7/2) of the Eu2+ ions. From the temperature dependence of the intensity (log I–103/T), we determined the activation energy (E a = 0.04 eV) for thermal quenching of photoluminescence. From the thermoluminescence spectra, we determined the trap depths: 0.31, 0.44, 0.53, 0.59 eV. The lifetime of the excited state 4f6 5d of the Eu2+ ions in the CaGa2Se4 crystal found from the luminescence decay kinetics is 3.8 μsec. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 1, pp. 112–116, January–February, 2009.  相似文献   

9.
Tin oxide (SnO2) nanorods were grown by high-pressure pulsed laser deposition (PLD). The nanorods were grown without the use of a catalyst but required high background pressure growth in order to realize small grain columnar growth and nanorod formation, with nanorod formation most favored on non-epitaxial substrates. The structures and morphology were characterized by field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). X-ray diffraction and HRTEM analysis indicate that the as-grown SnO2 nanorods are single crystals with a rutile structure. The nanorods are approximately 50–90 nm in diameters and 1.5 μm in length. This method provides an approach for large area synthesis of one dimensional SnO2 nanostructure materials. PACS 81.16.Mk; 61.46.-w; 81.07.-b  相似文献   

10.
We report the successful growth of an electroholographic crystal, potassium sodium tantalate niobate (KNTN), by a top-seeded solution growth method. Both blue and colorless crystals were obtained. The structure, optical absorption, and refractive dispersion properties of the as-grown crystals have been investigated. Furthermore, the Kerr coefficients R11 and R12 of paraelectric K0.95Na0.05Ta0.61Nb0.39O3 single crystal were determined by using an automated scanning Mach–Zehnder interferometer. The crystal has large Kerr coefficients with R11= 2.8×10-16 m2/V2 and R12= -0.3×10-16 m2/V2 at the wavelength of 632.8 nm near its cubic–tetragonal phase boundary. PACS 81.10.Dn; 42.70.Nq  相似文献   

11.
The modification of the electronic structure during adsorption of ultrathin copper phthalocyanine (CuPc) and 3, 4, 9, 10 perylene-tetracarboxylic-dianhydride (PTCDA) coatings on the surface of polycrystalline tin dioxide is traced. Auger electron spectroscopy is employed to find changes in the atomic composition of the surface. It is found with the help of low-energy electron total current spectroscopy using a testing beam of electrons with energies up to 30 eV that the total current spectra typical of organic films are formed when the thickness of the coating being deposited is 2–7 nm. The formation of an interface layer 1.5–2.0 nm in thickness is detected, in which the intensity of the structure of the total current spectra decreases and the effect of interaction of PTCDA molecules with the SnO2 surface is manifested.  相似文献   

12.
Pressure effects on magnetic properties of two La0.7Ca0.3MnO3 nanoparticle samples with different mean particle sizes were investigated. Both the samples were prepared by the glycine-nitrate method: sample S—as-prepared (10 nm), and sample S900—subsequently annealed at 900 °C for 2 h (50 nm). Magnetization measurements revealed remarkable differences in magnetic properties with the applied pressure up to 0.75 GPa: (i) for S sample, both transition temperatures, para-to-ferromagnetic T C = 120 K and spin-glass-like transition T f = 102 K, decrease with the pressure with the respective pressure coefficients dT C/dP = −2.9 K/GPa and dT f/dP = −4.4 K/GPa; (ii) for S900 sample, para-to-ferromagnetic transition temperature T C = 261 K increases with pressure with the pressure coefficient dT C/dP = 14.8 K/GPa. At the same time, saturation magnetization M S recorded at 10 K decreases/increases with pressure for S/S900 sample, respectively. Explanation of these unusual pressure effects on the magnetism of sample S is proposed within the scenario of the combined contributions of two types of disorders present in the system: surface disorder introduced by the particle shell, and structural disorder of the particle core caused by the prominent Jahn–Teller distortion. Both disorders tend to vanish with the annealing of the system (i.e., with the nanoparticle growth), and so the behavior of the sample S900 is similar to that previously observed for the bulk counterpart.  相似文献   

13.
Optical properties (photoluminescence and absorption) of Eu(bta)3(B) n (B = H2O or 1,10-phenanthroline) polycrystalline powders and fluoroacrylate polymers (FAPs) impregnated with these compounds using supercritical CO2 (SC CO2) were investigated. It was established that impregnation of Eu(bta)3phen into the FAPs using an SC CO2 solution was difficult to achieve. The type of B (ancillary ligand) and the polymer matrix were shown to influence the temperature quenching of photoluminescence of Eu3+ ions in the range 25–100°C. A comparative analysis of quantum yields (λex = 300 and 380 nm) and photoluminescence decay times (λex = 337.1 nm) for Eu(bta)3B n and for Eu(bta)3B n -doped FAPs was performed.  相似文献   

14.
Transparent Ni2+-doped β-Ga2O3 glass–ceramics were synthesized. The nanocrystal phase in the glass–ceramics was identified to be β-Ga2O3 and its size was about 3.6 nm. It was confirmed from the absorption spectra that the ligand environment of Ni2+ ions changed from the trigonal bi-pyramid fivefold sites in the as-cast glass to the octahedral sites in the glass–ceramics. The broadband infrared emission centering at 1270 nm with full width at half maximum (FWHM) of more than 250 nm was observed. The fluorescence lifetime was about 1.1 μs at room temperature. The observed infrared emission could be attributed to the 3 T 2g (3 F )→3 A 2g (3 F ) transition of octahedral Ni2+ ions. It is suggested that the Ni2+-doped transparent β-Ga2O3 glass–ceramics with broad bandwidth and long lifetime have a potential as a broadband amplification medium. PACS 42.70.-a; 42.70.Ce; 81.40.Tv  相似文献   

15.
Nanocrystalline SnO2 was synthesized in supercritical water at 385–415°C and 30 MPa (38–106 s residence time) in a tubular flow reactor from an aqueous solution of 0.1–0.4 M SnCl4. The conversion rate was between 53 and 81%, but increased to 97.8% when 0.1 M NaOH was added. Nanoparticles were analyzed by a series of independent analytical techniques, including TEM, Raman, XRD, SEM, EDX and FT-IR. The initial size of the particles was about 3.7 nm. After calcination at 450°C for 2 h, the particle size increased to 4 nm. The particles were of low crystallinity, as indicated by the weak Raman and XRD signals. All particles were composed of Sn and O, as verified by the EDX spectra. The crystals were tetragonal, as confirmed by the weak XRD spectrum. After calcination at 600°C for 10 h, the particle size increased to 9 nm, while high crystallinity was confirmed by Raman and XRD analyses. All the crystals had the same structure, as indicated by TEM electron diffraction patterns. Using this one-step supercritical water process, nanoparticles of SnO2 can be conveniently produced continuously in a flow reactor in less than 2 min.  相似文献   

16.
Double-pulse LIBS and ED XRF usabilities for quantitative analysis of Ti in samples of cotton, wool, and viscose fabrics were compared to each other. The analyzed samples were prepared by stippling a particular fabric with TiO2 nanoparticle sol (particle size 100 nm). Both spectrometers were calibrated with the aid of the same sets of authentic fabric samples previously analyzed by ICP OES after the microwave digestion. Average values of the Ti concentration calculated from five repeated measurements of the same sample obtained by LIBS and ED XRF were comparable for all types of the tested materials (100∙(CTi-LIBS/CTi-ED XRF)) ≅ 96–109%), but the precision of analysis expressed as RSD (relative standard deviation) was usually better for ED XRF (RSDLIBS from 9 to 25%, RSDED XRF from 3 to 17%). Poor RSD values of LIBS measurements were observed mainly in the case of samples with lower areal weights. Limits of detection calculated as a triple standard deviation of five repeated measurements of Ti in a sample with the low concentration of the analyte were comparable for both methods (LODLIBS = from 15 to 97, and LODED XRF = from 21 to 64, all in mg/kg).  相似文献   

17.
A sonochemical method is developed to fabricate SnO2 nanotubular materials from biological substances (here, it is cotton). The cotton fibers in SnCl2 solution were first treated with ultrasonic waves in air, followed by calcinations to give nanotubular materials that faithfully retain the initial cotton morphology. The microstructure and morphology of the obtained SnO2 nanotubules were characterized by the combination of field-emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and N2 adsorption/desorption measurements. The thermal behavior and crystalline properties were examined in the temperature range of 450–700 °C. The nanocrystals composing of SnO2 nanotubules were estimated about 8.5, 13.2, and 14.2 nm corresponding to calcination temperatures of 450, 550, and 700 °C, respectively. The sensor performance of biomorphic SnO2 nanotubules calcined at 700 °C was investigated in the atmosphere of ethanol, formaldehyde, carbinol, carbon monoxide, hydrogen, ammonia, and acetone, respectively, which exhibited a good selectivity for acetone at a working temperature of 350 °C. The sensitivity to 20 ppm acetone, S, was 6.4 at 350 °C with rapid response and recovery (around 10–9 s). These behaviors were well explained in relation to the morphology of the nanotubules thus produced.  相似文献   

18.
(K0.5Na0.5)(Nb1-xTax)O3 lead-free piezoelectric ceramics have been prepared by an ordinary sintering technique. The results of X-ray diffraction reveal that Ta5+ diffuses into the K0.5Na0.5NbO3 lattices to form a solid solution with an orthorhombic perovskite structure. Because of the high melting temperature of KTaO3, the (K0.5Na0.5)(Nb1-xTax)O3 ceramics can be sintered at higher temperatures. The partial substitution of Ta5+ for the B-site ion Nb5+ decreases both paraelectric/cubic–ferroelectric/tetragonal and ferroelectric/tetragonal–ferroelectric/orthorhombic phase transition temperatures, TC and TO-T. It also induces a relaxor phase transition and weakens the ferroelectricity of the ceramics. The ceramics become ‘softened’, leading to improvements in d33, kp, kt and εr and a decease in Ec, Qm and Np. The ceramics with x=0.075–0.15 become optimum, having d33=127–151 pC/N, kp=0.43–0.44, kt=0.43–0.44, εr=541–712, tanδ=1.75–2.48% and TC=378–329 °C. PACS 77.65.-j; 77.84.Dy; 77.84.-s  相似文献   

19.
Uniform polycrystalline SnO2 microtubes formed by sintered nanoparticles (fixed to a surface or in free standing form) were obtained with the infiltration technique using SnCl4 as precursor and a porous polycarbonate (PC) film as template. The advantage of this synthesis method was based on its simplicity, reproducibility, low cost, and the possible applicability to other complex oxides. The morphology and crystal structure of SnO2 tubes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The crystalline sizes of the nanoparticles assembled in the tube walls obtained at 600 °C were in the range of 5–7 nm, calculated from both the XRD and the TEM data. The length of the microtubes fixed to a silicon nitride surface ranged between 2 and 7 μm. Sensors fabricated with this material showed unusual sensitivity to ethanol at room temperature and fast reversible response, as compared to those obtained by the deposition of metallic tin film and further oxidation (Rheotaxial Growth and Thermal Oxidation method).  相似文献   

20.
We have ground bulk samples to obtain nanoparticles of (Ga2S3)1–x (Eu2O3) x solid solutions, the sizes of which were determined using an atomic force microscope. The photoluminescence spectra of the nanoparticles were studied in the temperature interval 77–300 K. We have established the mechanisms for emission and transfer of energy from the matrix to the rare-earth ion, and we determined the Stokes shift (ΔS = 0.7 eV), the Huang–Rhys parameter (S = 16), and the optical phonon energy (ħ−ω = 23 meV).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号