首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
For the HLS-Ⅱ bunch current measurement system, in order to obtain the absolute value of bunch current, the calibration factor should be determined by using DCCT. At the HLS storage ring, the stretch effect of bunch length is observed and the change rate is about 19% when the bunch current decays over time and this will affect the performance of bunch current detection. To overcome the bunch stretch influence in the HLS-Ⅱ bunch current measurement, an evaluation about pickup type and signal processing is carried out. Strip-line pickup and button pickup are selectable, and the theoretical analysis and demonstration experiment are performed to find out an acceptable solution for the bunch current measurement system at HLS-Ⅱ. The experimental data analysis shows that the normalized calibration factor will change by about 27% when the bunch length changes by about 19% if using the button pickup and processing by peak value of bunch signal; the influence will be reduced to 2% less if adopting the strip-line pickup and integral.  相似文献   

2.
For the HLS-bunch current measurement system,in order to obtain the absolute value of bunch current,the calibration factor should be determined by using DCCT.At the HLS storage ring,the stretch efect of bunch length is observed and the change rate is about 19% when the bunch current decays over time and this will afect the performance of bunch current detection.To overcome the bunch stretch influence in the HLS-bunch current measurement,an evaluation about pickup type and signal processing is carried out.Strip-line pickup and button pickup are selectable,and the theoretical analysis and demonstration experiment are performed to find out an acceptable solution for the bunch current measurement system at HLS-.The experimental data analysis shows that the normalized calibration factor will change by about 27% when the bunch length changes by about 19% if using the button pickup and processing by peak value of bunch signal;the influence will be reduced to 2% less if adopting the strip-line pickup and integral.  相似文献   

3.
The fast luminosity monitor counting the γ photons above a given energy threshold emitted from radiative Bhabha scattering has been operated in the BEPCⅡ to measure the relative luminosity bunch by bunch for the first time and used successfully in beam tuning of BEPCⅡ.In the relative mode the monitor is able to deliver the relative luminosities with an accuracy of 0.8 %.By steering the electron beam while observing the counting rate changes of the monitor the horizontal and vertical sizes of the bunch spots can be estimated as:sxe+ =sxe-=0.356 mm,sye+ =sye-=0.011 mm.  相似文献   

4.
The fast luminosity monitor counting the γ photons above a given energy threshold emitted from radiative Bhabha scattering has been operated in the BEPC Ⅱ to measure the relative luminosity bunch by bunch for the first time and used successfully in beam tuning of BEPC Ⅱ. In the relative mode the monitor is able to deliver the relative luminosities with an accuracy of 0.8 %. By steering the electron beam while observing the counting rate changes of the monitor the horizontal and vertical sizes of the bunch spots can be estimated as: Sxe+ =Sxe =0.356 mm, Sye+ =Sye- =0.011 mm.  相似文献   

5.
Using the Hefei Light Source phase Ⅱ project (HLS- Ⅱ) as an example, a theoretical analysis of shortening the bunch lengths using a higher harmonic cavity (HHC) is given. The threshold voltage of an active HHC and the threshold tuning angle of a passive HHC are first analysed. The optimum tuning angle for the constant detuning scenario and the optimum harmonic voltage for the constant voltage scenario are presented. The calculated results show that the reduced bunch length is about half that of the nominal bunch. The bunch lengths vary from 11 mm at 0.1 A to 7 mm at 0.4 A for the constant detuning scenario, while the bunch lengths are around 7 mm over the beam current range for the constant voltage scenario. In addition, the synchrotron frequency spread is increased. It indicates that HHC may be used to reduce the bunch length and increase the Landau damping of synchrotron oscillations in a storage ring.  相似文献   

6.
The current computing environment of our Computing Center in IHEP uses a SAS (server Attached Storage)architecture,attaching all the storage devices directly to the machines.This kind of storage strategy can‘t meet the requirement of our BEPC II/BESⅢ project properly.Thus we design and implement a SAN-based computing environment,which consists of several computing farms,a three-level storage pool,a set of storage management software and a web-based data management system.The feature of ours system includes cross-platform data sharing,fast data access,high scalability,convenient storage management and data management.  相似文献   

7.
The Duke storage ring is a dedicated driver for the storage ring based oscillator free-electron lasers(FELs), and the High Intensity Gamma-ray Source(HIGS). It is operated with a beam current ranging from about1 mA to 100 mA per bunch for various operations and accelerator physics studies. High performance operations of the FEL and γ-ray source require a stable electron beam orbit, which has been realized by the global orbit feedback system. As a critical part of the orbit feedback system, the electron beam position monitors(BPMs) are required to be able to precisely measure the electron beam orbit in a wide range of the single-bunch current. However, the high peak voltage of the BPM pickups associated with high single-bunch current degrades the performance of the BPM electronics, and can potentially damage the BPM electronics. A signal conditioning method using low pass filters is developed to reduce the peak voltage to protect the BPM electronics, and to make the BPMs capable of working with a wide range of single-bunch current. Simulations and electron beam based tests are performed. The results show that the Duke storage ring BPM system is capable of providing precise orbit measurements to ensure highly stable FEL and HIGS operations.  相似文献   

8.
The Duke storage ring is a dedicated driver for the storage ring based oscillator free-electron lasers(FELs), and the High Intensity Gamma-ray Source(HIGS). It is operated with a beam current ranging from about1 mA to 100 mA per bunch for various operations and accelerator physics studies. High performance operations of the FEL and γ-ray source require a stable electron beam orbit, which has been realized by the global orbit feedback system. As a critical part of the orbit feedback system, the electron beam position monitors(BPMs) are required to be able to precisely measure the electron beam orbit in a wide range of the single-bunch current. However, the high peak voltage of the BPM pickups associated with high single-bunch current degrades the performance of the BPM electronics, and can potentially damage the BPM electronics. A signal conditioning method using low pass filters is developed to reduce the peak voltage to protect the BPM electronics, and to make the BPMs capable of working with a wide range of single-bunch current. Simulations and electron beam based tests are performed. The results show that the Duke storage ring BPM system is capable of providing precise orbit measurements to ensure highly stable FEL and HIGS operations.  相似文献   

9.
Using the Hefei Light Source phaseⅡproject(HLS-Ⅱ)as an example,a theoretical analysis of shortening the bunch lengths using a higher harmonic cavity(HHC)is given.The threshold voltage of an active HHC and the threshold tuning angle of a passive HHC are first analysed.The optimum tuning angle for the constant detuning scenario and the optimum harmonic voltage for the constant voltage scenario are presented.The calculated results show that the reduced bunch length is about half that of the nominal bunch.The bunch lengths vary from 11 mm at 0.1 A to 7 mm at 0.4 A for the constant detuning scenario,while the bunch lengths are around 7 mm over the beam current range for the constant voltage scenario.In addition,the synchrotron frequency spread is increased.It indicates that HHC may be used to reduce the bunch length and increase the Landau damping of synchrotron oscillations in a storage ring.  相似文献   

10.
BEPCII has two rings each with an injection system. The injection system of each ring consists of two kicker magnets and a septum magnet. The injection layout of two rings is the same. Both two kickers would kick the beam in horizontal plane. The betatron phase advance in the horizontal plane between two kickers is designed exactly 180° in order to reduce the perturbation to the circulating beams during injection. In fact, the residual orbit oscillation will originate because of the existence of a variety of errors. The Librea Electron BPM processor is used to acquire the beam position data in turn-by-turn mode and to analyze the residual orbit oscillation. According to the measurement results, minimization of the residual orbit oscillation can be done by adjusting the peak field strength and trigger timing delay of two kickers. With very small residual orbit oscillation the two beams can keep collision condition during the injection.  相似文献   

11.
Electron Cloud Instability has been studied in the operation of BEPC. The BEPCⅡ began the commissioning in November 2006 and the positron beam current has reached 500 mA. Because of such a high beam current, some instabilities such as ECI, bunch lengthening et al, have appeared during the operation. The experimental investigation on ECI during the commissioning of BEPCⅡ will be reported in this paper.  相似文献   

12.
Electron Cloud Instability has been studied in the operation of BEPC. The BEPCⅡ began the commissioning in November 2006 and the positron beam current has reached 500 mA. Because of such a high beam current, some instabilities such as ECI, bunch lengthening et al, have appeared during the operation. The experimental investigation on ECI during the commissioning of BEPCⅡ will be reported in this paper.  相似文献   

13.
In the Hefei Light Source (HLS) storage ring, multibunch operation is used to obtain a high luminosity. Multibunch instabilities can severely limit light source performance with a variety of negative impacts, including beam loss, low injection efficiency, and overall degradation of the beam quality. Instabilities of a multibunch beam can be mitigated using certain techniques including increasing natural damping (operating at a higher energy), lowering the beam current, and increasing Landau damping. However, these methods are not adequate to stabilize a multibunch electron beam at a low energy and with a high current. In order to combat beam instabilities in the HLS storage ring, active feedback systems including a longitudinal feedback system (LFB) and a transverse feedback system (TFB) will be developed as part of the HLS upgrade project, the HLS-Ⅱ storage ring project. As a key component of the longitudinal bunch-by-bunch feedback system, an LFB kicker cavity with a wide bandwidth and high shunt impedance is required. In this paper we report our work on the design of the LFB kicker cavity for the HLS-Ⅱ storage ring and present the new tuning and optimization techniques developed in designing this high performance LFB kicker.  相似文献   

14.
In the upgrade project of Hefei Light Source(HLSⅡ),a new digital longitudinal bunch-by-bunch feedback system will be developed to suppress the coupled bunch instabilities in the storage ring effectively.We design a new waveguide overloaded cavity longitudinal feedback kicker as the feedback actuator.The beam pipe of the kicker is a racetrack shape so as to avoid a transition part to the octagonal vacuum chamber.The central frequency and the bandwidth of the kicker have been simulated and optimized to achieve design goals by the HFSS code.A higher shunt impedance can be obtained by using a nose cone to reduce the feedback power requirement.Before the kicker cavity was installed in the storage ring,a variety of measurements were carried out to check its performance.All these results of simulation and measurement are presented.  相似文献   

15.
The properties of the ground state of a closed dot-ring system with a magnetic flux in the Kondo regime are studied theoretically by means of a one-impurity Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. It is shown that at T=0, a suppressed Kondo effect exists in this system even when the mean level spacing of electrons in the ring is larger than the bulk Kondo temperature. The physical quantities depend sensitively on both the parity of the system and the size of the ring; the rich physical behaviour can be attributed to the coexistence of both the finite-size effect and the Kondo screening effect. It is also possible to detect the Kondo screening cloud by measuring the persistent current or the zero field impurity susceptibility χ_{imp} directly in future experiments.  相似文献   

16.
We have investigated the persistent current in a mesoscopic ring with a side-coupled quantum dot. The problems are probed by using the one-impurity Anderson Hamiltonian and are treated with the slave boson mean field theory. It is shown that the persistent current in this system has the spin fluctuations, and the charge transfers between the two subsystems are suppressed in the limit of Δ/T_K^0《1. The minimum value of the persistent current for ξ_K/L=5 of the odd parity system provides an opportunity to detect the Kondo screening cloud.  相似文献   

17.
We theoretically study the properties of the ground state of the parallel-coupled double quantum dots embedded in a mesoscopic ring in the Kondo regime by means of the two-impurity Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. Our results show that in this system, the persistent current depends sensitively on both the parity of this system and the size of the ring. Two dots can be coupled coherently, which is reflected in the giant current peak in the strong coupling regime. This system might be a candidate for future device applications.  相似文献   

18.
吴洪  鲍诚光 《中国物理》2006,15(9):2102-2107
The effect of an electric field E on a narrow quantum ring that contains two electrons and is threaded by a magnetic flux B has been investigated. Localization of the electronic distribution and suppression of the Aharonov--Bohm oscillation (ABO) are found in the two-electron ring, which are similar to those found in a one-electron ring. However, the period of ABO in a two-electron ring is reduced by half compared with that in a one-electron ring. Furthermore, during the variation of B, the persistent current of the ground state may undergo a sudden change in sign. This change is associated with a singlet--triplet transition and has no counterpart in one-electron rings. For a given E, there exists a threshold of energy. When the energy of the excited state exceeds the threshold, the localization would disappear and the ABO would recover. The value of the threshold is proportional to the magnitude of E. Once the threshold is exceeded, the persistent current is much stronger than the current of the ground state at E=0.  相似文献   

19.
The BEPC will increase its luminosity ten times with upgrade of both the machine and detector,which is the project BEPCII,The project will be started at beginning chine and detector,which is the project BEPCII.The project will be started at beginning of 2002 and finished within 3-4 years.In order to reach the goal of the BEPCII,a number of new equipment will be added in the system,such as the superconducting RF cavities,new magnet power supplies and beam feedback system,and the BEPC control system has to be upgraded.The BEPC control system was built in 1987 and was upgraded in 1994.It is an Open VMS and CAMAC based-system,some equipment is controlled by PCs.We are going to upgrade the existing system by EPICS.Several VME IOCs will be added in the system with feildbus,PLCs for the new equipment control.And we will keep the existing system in use,such as CAMAC hardware ,PC based sub-control and application programs,which will be merged into the EPICS system.Recently the development of the EPICS prototype has been started.Regard some slow control,commercial SCADA product can be chosen as the development tool.We have just finished a prototype with the SCADA product Wizcon.This paper will describe the system design and development issues.  相似文献   

20.
The coupled resonator-induced transparency(CRIT) phenomenon, which is analogous to electromagnetically induced transparency in atomic systems, can occur in an original integrated optical resonator system due to the coherent interference of the coupled optical resonators. The system was composed of three ring resonators on silicon, each with the same cavity size, and the optical coupling to the input and output ports was achieved using grating with a power coupling efficiency of 36%. A CRIT resonance whose spectrum shows a narrow transparency peak with a low group velocity was demonstrated.The quality factor of the ring resonator can attain a value up to 6×10~4, and the harmonic wavelength can be controlled by adjusting the temperature. The through and drop transmission spectra of the resonator are reconciled well with each other and also consistent well with the theoretical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号